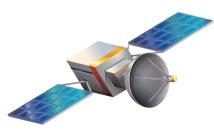
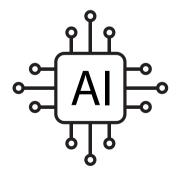


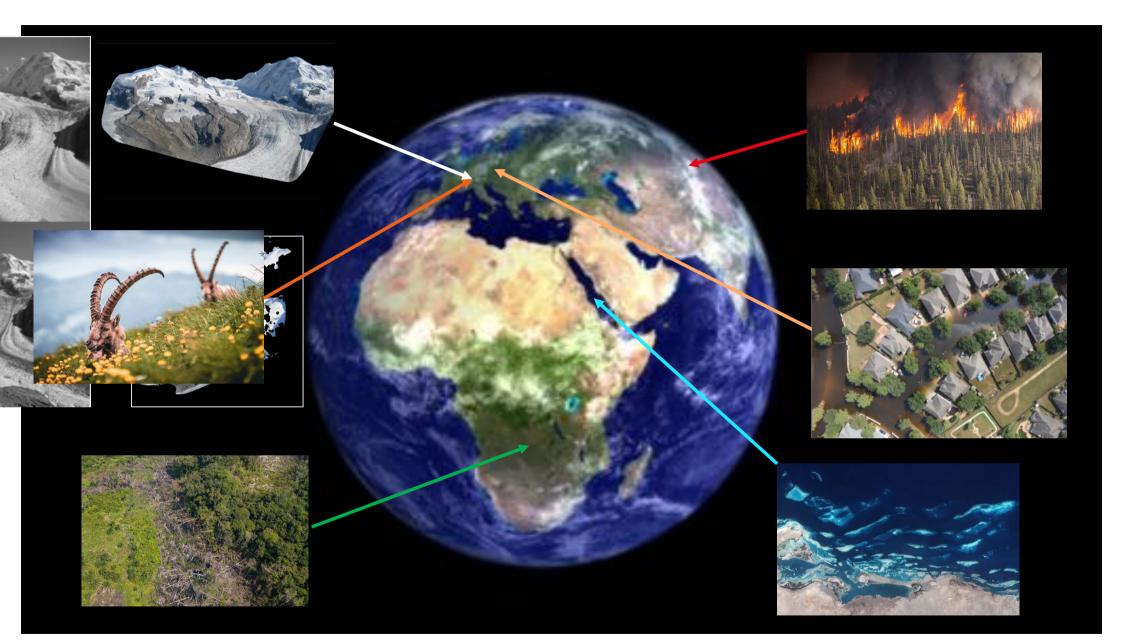
Machine learning for the environment: monitoring the pulse of our Planet with remotely sensed data

Prof. Devis Tuia, EPFL



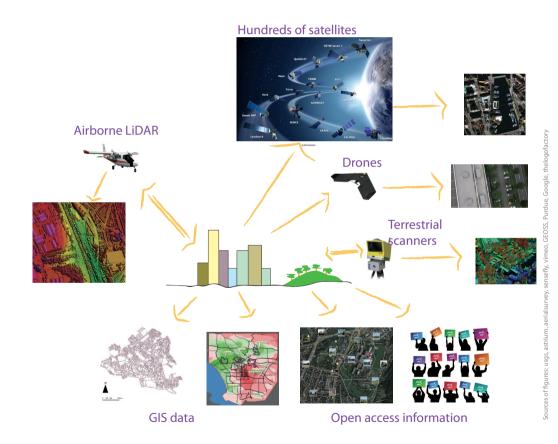


 École polytechnique fédérale de Lausanne



EPFL There were many sensor data to monitor Earth in 2015

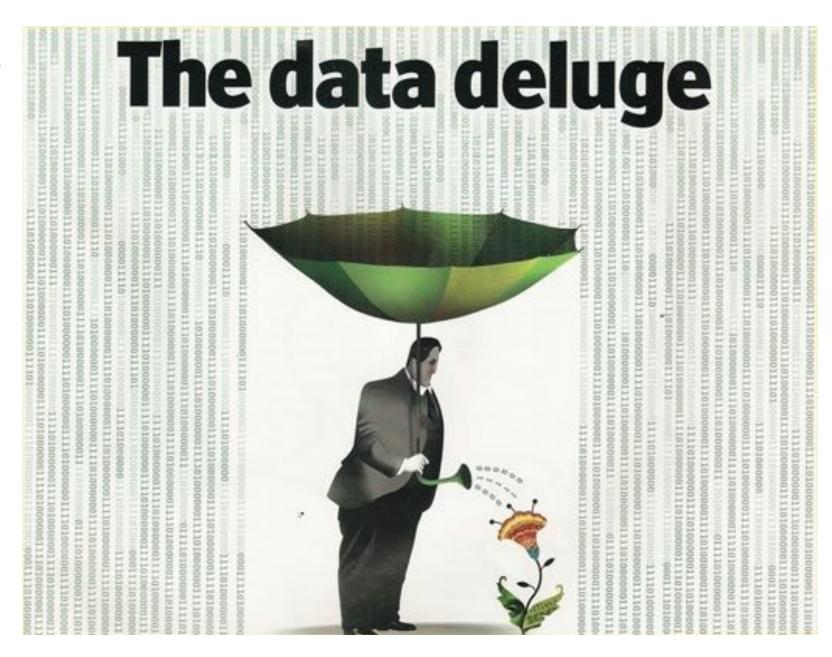
- 333 Earth Observation satellites in orbit in 2015 [ucsusa.org].
- 10'000 recreational drones registered in the U.S. by 2020 [FAA].
- 20 Pb of oblique photos in Google Street View in 2015 [Google Maps].



EPFL There are many sensor data to monitor Earth in 2015 2023

- 333 1'005 Earth Observation satellites in orbit in 2023 [ucsusa.org].
- 10'000–1'100'000 recreational drones registered in the U.S in 2023. [FAA].
- 170 billions of oblique photos in Google Street View in 2020 [Google Maps].





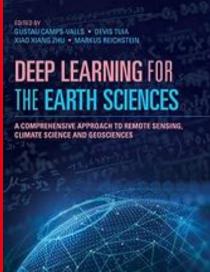
EPFLWhy now : statistical and computational
models are good enough...

 Machine learning has reached a certain maturity... and percolated in many fields of science.

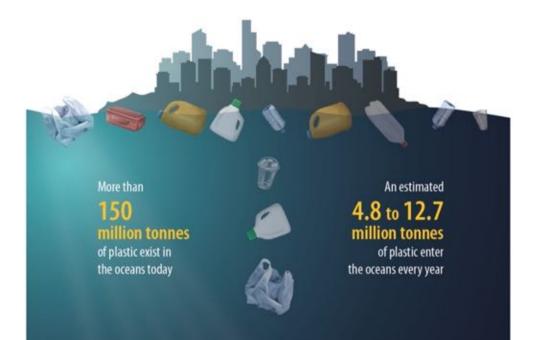
D. Tuia / May 2023

With Earth observation and Al, we can

develop computational approaches to the environmental sciences that are accurate



EPFL Marine litter is a BIG problem

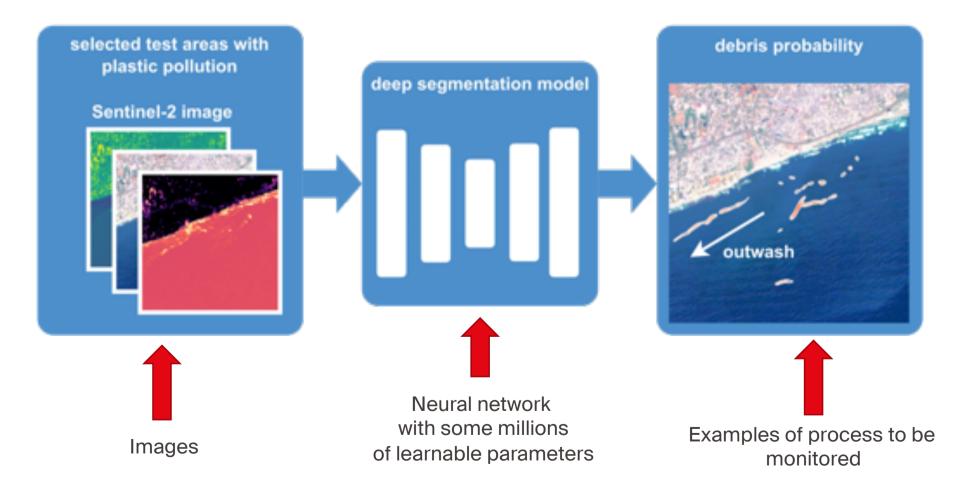


Macro-plastics decompose in microplastics that are

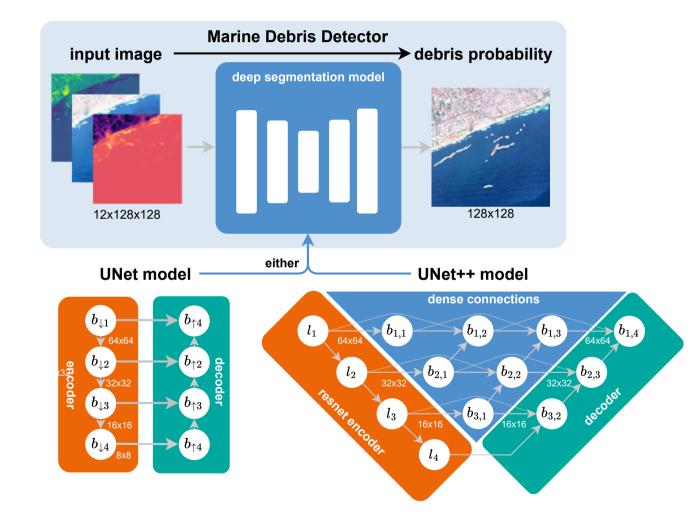
- a direct danger to animals
- have been found in
 - Antarctic Penguins
 - deep-sea sediments
 - human stool
 - ...

with unclear and potentially harmful impact on human health

Building environmental deep learning models



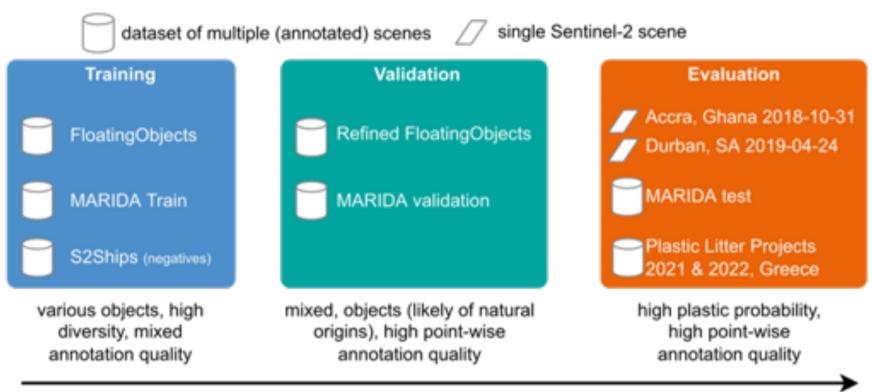
EPFL Learning Spatial Context with CNNs



Building environmental deep learning models

 We used debris events found in news and social media, then hand labeled on images by experts.

EPFL Aggregation of large training and evaluation dataset



likelihood of plastic debris and quality of annotations

EPFL Results

Takehome

- DL models outperform traditional RF

Accra					
trained on	original data		50.5%	our train set	
	RF	UNET	RF	UNET	UNET++
ACCURACY	0.653	0.882	0.680	$\textbf{0.924} \pm 0.016$	0.930 ± 0.016
F-SCORE	0.464	0.871	0.545	$\textbf{0.920} \pm 0.018$	0.926 ± 0.018
AUROC	0.246	0.965	0.899	$\textbf{0.978} \pm 0.008$	0.981 ± 0.006
JACCARD	0.302	0.772	0.374	$\textbf{0.852} \pm 0.030$	0.862 ± 0.031
KAPPA	0.301	0.764	0.357	$\textbf{0.848} \pm 0.031$	$\textbf{0.859} \pm 0.031$
Durban					
trained on	original data			our train set	
	RF	UNET	RF	UNET	UNET++
ACCURACY	0.781	0.587	0.811	$\textbf{0.908} \pm \textbf{0.010}$	$\textbf{0.934} \pm 0.018$
F-SCORE	0.105	0.497	0.708	0.756 ± 0.032	0.837 ± 0.053
AUROC	0.376	0.765	0.862	0.850 ± 0.030	0.914 ± 0.018
JACCARD	0.055	0.330	0.548	0.609 ± 0.042	0.722 ± 0.048
KAPPA	0.082	0.245	0.569	$\textbf{0.704} \pm \textbf{0.037}$	0.797 ± 0.063
Marida-test	set				
trained on	original data			our train set	
	RF	UNET	RF	UNET	UNET++
ACCURACY	0.697	0.838	0.811	$\textbf{0.865} \pm 0.006$	0.867 ± 0.005
F-SCORE	0.288	0.701	0.708	$\textbf{0.741} \pm 0.012$	0.749 ± 0.009
AUROC	0.488	0.764	0.862	$\textbf{0.738} \pm 0.012$	0.746 ± 0.021
JACCARD	0.168	0.539	0.548	$\textbf{0.589} \pm 0.015$	0.598 ± 0.012
KAPPA	0.197	0.593	0.569	$\textbf{0.654} \pm 0.016$	0.661 ± 0.012

EPFL Results

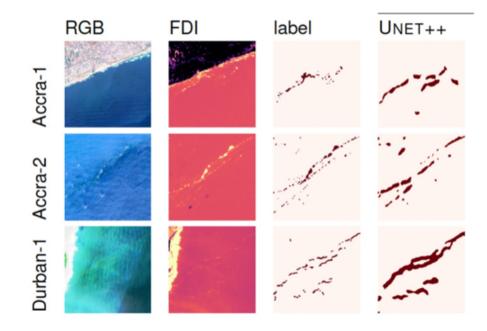
Takehome

- DL models outperform traditional RF
- Data more important than models!

Accra	origing	Idata	1	our train o	at l
trained on	original data		RF	OUR train set	
	-				
ACCURACY	0.653	0.882	0.680	0.924 ± 0.016	0.930 ± 0.016
F-SCORE	0.464	0.871	0.545	0.920 ± 0.018	0.926 ± 0.018
AUROC	0.246	0.965	0.899	0.978 ± 0.008	0.981 ± 0.006
JACCARD	0.302	0.772	0.374	$\textbf{0.852} \pm 0.030$	0.862 ± 0.031
KAPPA	0.301	0.764	0.357	0.848 ± 0.031	0.859 ± 0.031
Durban			1		
trained on	original data		our train set		
	RF	UNET	RF	UNET	UNET++
ACCURACY	0.781	0.587	0.811	0.908 ± 0.010	0.934 ± 0.018
F-SCORE	0.105	0.497	0.708	0.756 ± 0.032	0.837 ± 0.053
AUROC	0.376	0.765	0.862	0.850 ± 0.030	0.914 ± 0.018
JACCARD	0.055	0.330	0.548	0.609 ± 0.042	0.722 ± 0.048
КАРРА	0.082	0.245	0.569	$\textbf{0.704} \pm \textbf{0.037}$	$\textbf{0.797} \pm 0.063$
Marida-test	set				
trained on	original data			our train set	
	RF	UNET	RF	UNET	UNET++
ACCURACY	0.697	0.838	0.811	$\textbf{0.865} \pm 0.006$	0.867 ± 0.005
F-SCORE	0.288	0.701	0.708	$\textbf{0.741} \pm 0.012$	0.749 ± 0.009
AUROC	0.488	0.764	0.862	0.738 ± 0.012	0.746 ± 0.021
	0.488 0.168	0.764 0.539	0.862	0.738 ± 0.012 0.589 ± 0.015	0.746 ± 0.021 0.598 ± 0.012

Building environmental deep learning models that are accurate

Our learning models detect plastics at sea from space with ~ 85% accuracy



M. Russwurm, Venkatesam S. J., and **D. Tuia.** Large-scale detection of marine debris in coastal areas with Sentinel-2. *Under review*.

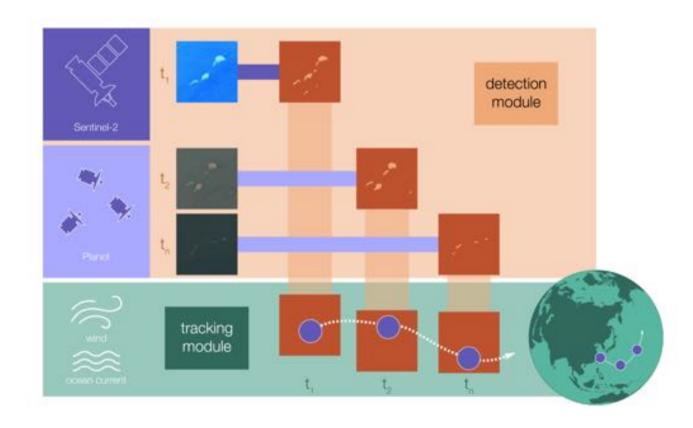
EPFL Going further: few shot scenarios tackling geographical diversity with meta-learning

- Each region is different!
- So is each timestep!
- Teaching models to adapt to new situations with just two clicks

• Using MAML [Finn et al.]

Building environmental deep learning Models that are accurate and useful

THE OCEAN



With Earth observation and Al, we can

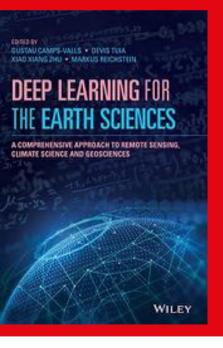
develop computational approaches to the environmental sciences that are accurate

EUSTAN DISTANI CAMPERIALIS + DIVISITIAN XIAO XIANE THU + MARKUS RECRETTIN DEEP LEARNING FOR THE EARTH SCIENCES 20

WILEY

With Earth observation and Al, we can

develop computational approaches to the environmental sciences that are accurate, but also scalable, knowledge-driven and accessible to everyone.



EPFL

Towards environmental deep learning that is

Accurate Scalable Knowledge-driven Accessible to anyone

EPFL Scalable

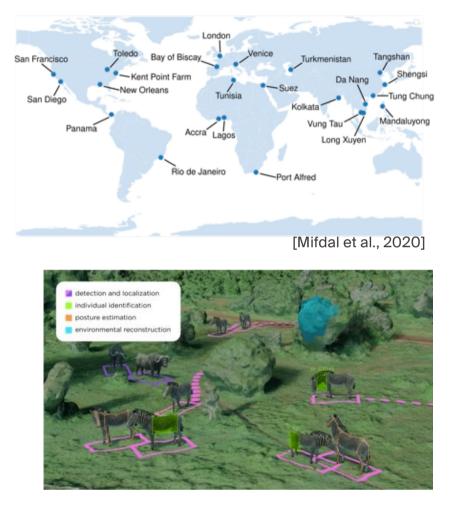


- No model should work only on
 - one image
 - one region of the world
 - one task

Mifdal, J., Longépé, N., and **Rußwurm, M.**: Towards detecting floating objects on a global scale with spatial features using Sentinel-2, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2021, 285–293,

EPFL Scalable

- No model should work only on
 - one image
 - one region of the world
 - one task



D. Tuia, **B. Kellenberger**, S. Beery, B. Costelloe, S. Zuffi, B. Risse, A. Mathis, M. W. Mathis, F. van Langevelde, T. Burghardt, R. Kays, H. Klinck, M. Wikelski, I. D. Couzin, G. van Horn, M. C. Crofoot, C. V. Stewart, and T. Berger-Wolf. Perspectives in machine learning for wildlife conservation. *Nature Comm.*, 13(792), 2022.

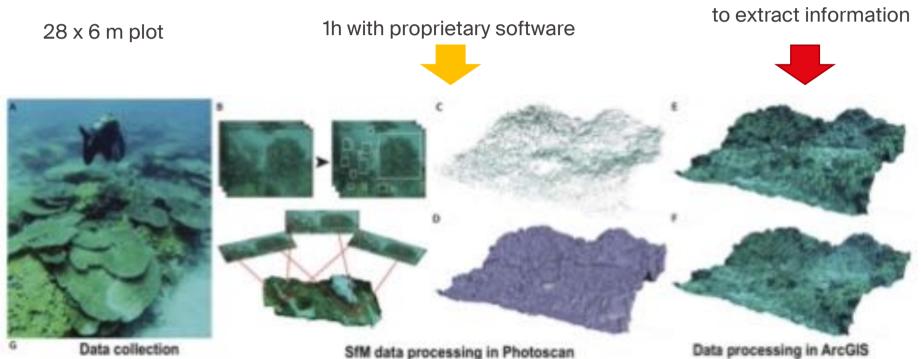
Coral reefs

cover only 0.1% of oceans, but host 25% of all marine life. protect coastlines, generate revenue (tourism, fishing, ...).

in 50 years, we managed to kill half of them.

How do we monitor a large ecosystem like that?

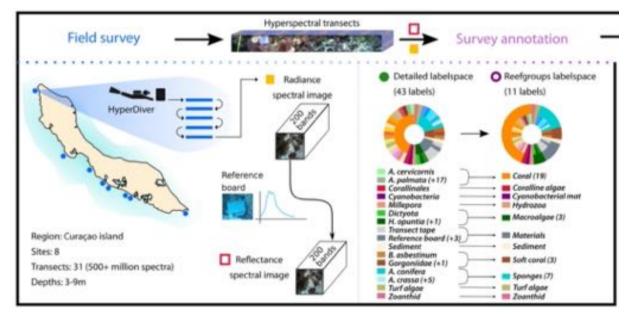
EPFL When the technology does not scale well, monitoring is difficult.



[Burns et al., 2015, https://peerj.com/articles/1077/]

EPFLWhen the setup is unique: great results,
but difficult to apply elsewhere

- Published models often rely on complex setups, very expensive
- E.g. hyperspectral sensors



Schürholz and Chennu, Methods in Ecology and Evolution, 2022

EPFL **Our bet: affordable setups**

- Scalable to other reefs
- Easy to acquire / replace

31

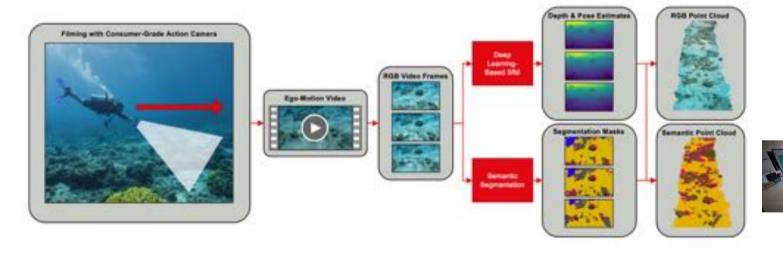
Mark I: March 2022 - Isreal / Jordan

Mark II: August 2022 - Djibouti

EPFL

Enabling scalable reef monitoring: Open source, fast, large scale.

- With custom-built, affordable imaging setup
- A model that works on videos, leveraging 2 tasks
- Once trained, 3D reconstructs a 100m transect in playing video time
- Tested in Isreal, Jordan and Djibouti in 2022

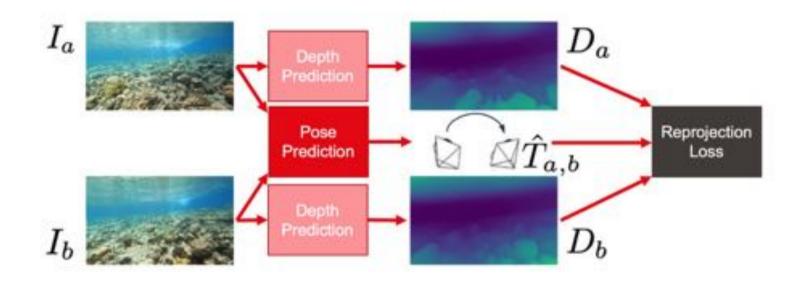


J. Sauder, G. Banc-Praudi, A. Meibom, and D. Tuia. Scalable semantic 3d mapping of coral reefs with deep learning. Under review.

CAp conference 2023

Pose and depth estimation

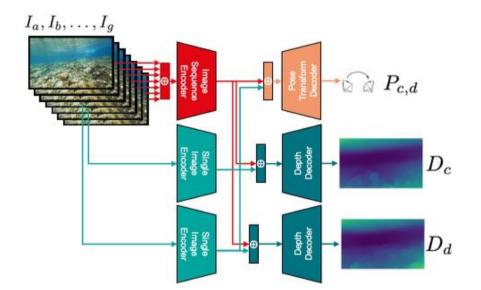
- Encoders based on ResNet-34
- Can create the 3D map at 18 frames per second



J. Sauder, G. Banc-Prandi, A. Meibom, and D. Tuia. Scalable semantic 3d mapping of coral reefs with deep learning. Under review.

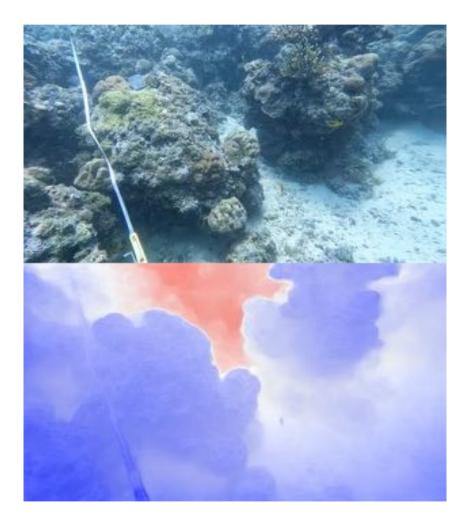
Pose and depth estimation

- We enforce temporal consistency by encoding 7 frames at a time
- 3 before and 3 after
- Each decoder uses the frame + the sequence features



Pose and depth estimation

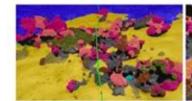
- We enforce temporal consistency by encoding 7 frames at a time
- 3 before and 3 after
- Each decoder uses the frame + the sequence features

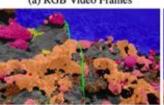


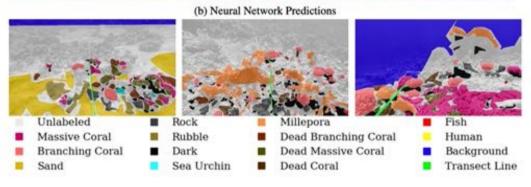
EPFL Semantic segmentation

- Unet with ResNeXt backbone
- ~85% accurate in Jordanian and Israeli reefs

(a) RGB Video Frames





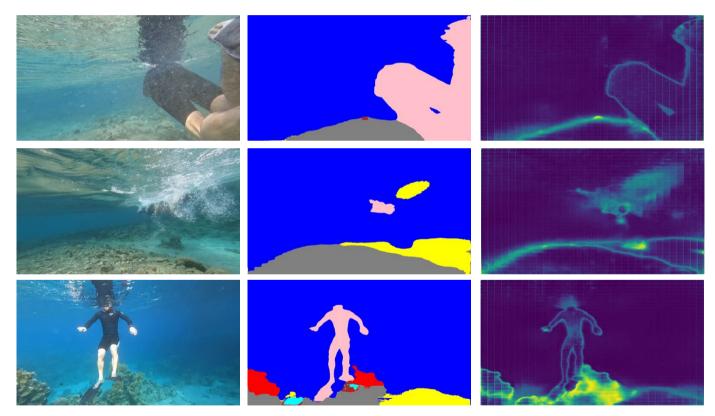


J. Sauder, G. Banc-Prandi, A. Meibom, and D. Tuia. Scalable semantic 3d mapping of coral reefs with deep learning. Under review.

EPFL Learning to detect unwanted classes

Used to remove unwanted classes prior to 3D reconstruction

- Diver body
- Fishes
- Far away pixels

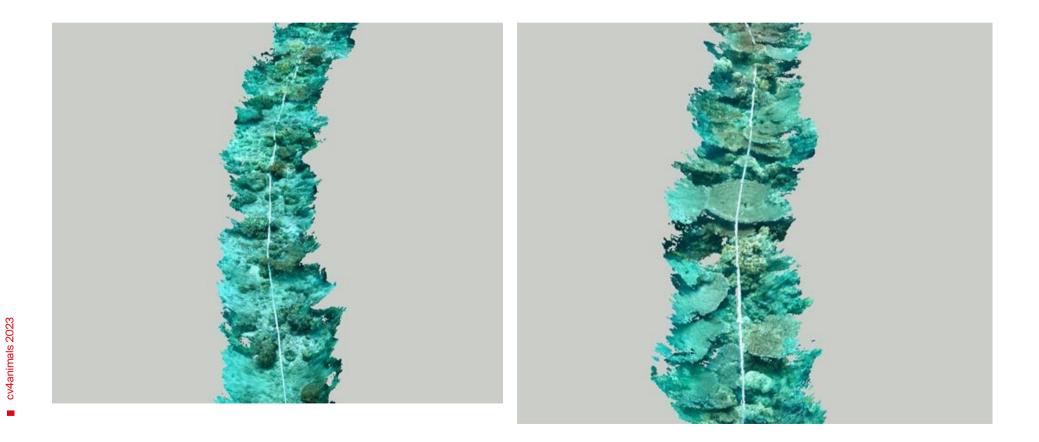


Video frame

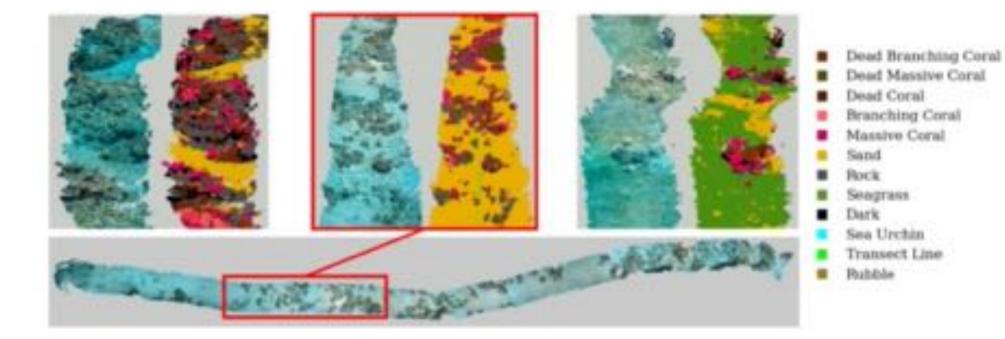
Segmentation

Uncertainty

EPFL The multitask model allow us to create reliable 3D reconstructions of the reef



EPFL Mapping entire dive sites (here: 100m long)



EPFL



Towards environmental deep learning that is

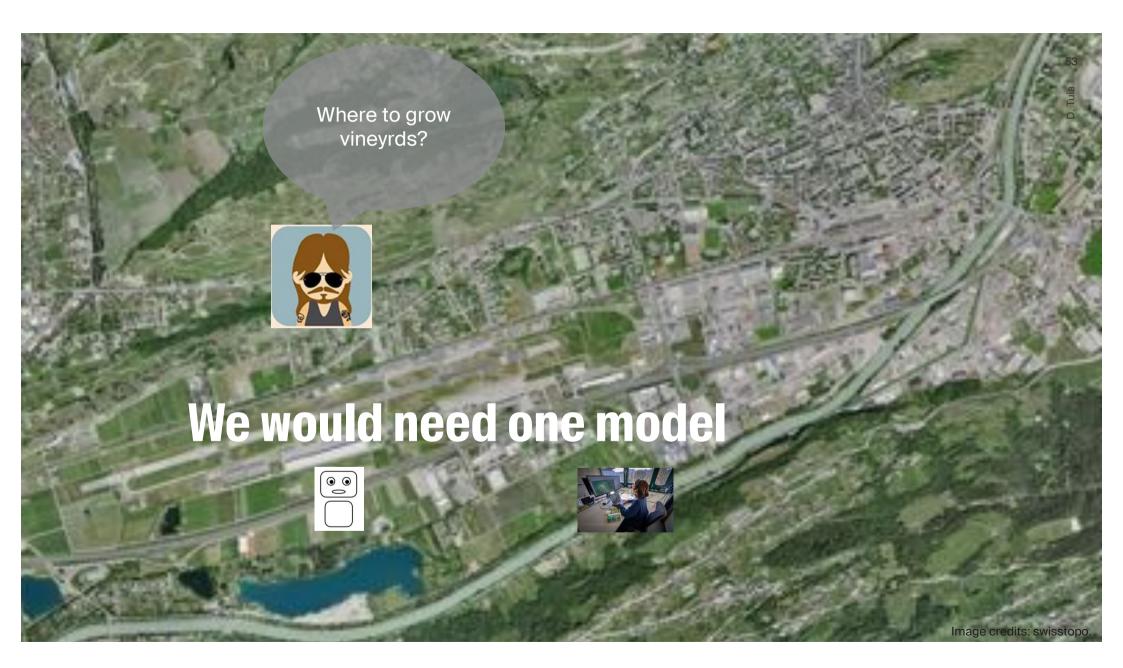
Accurate Scalable Knowledge-driven Accessible to anyone

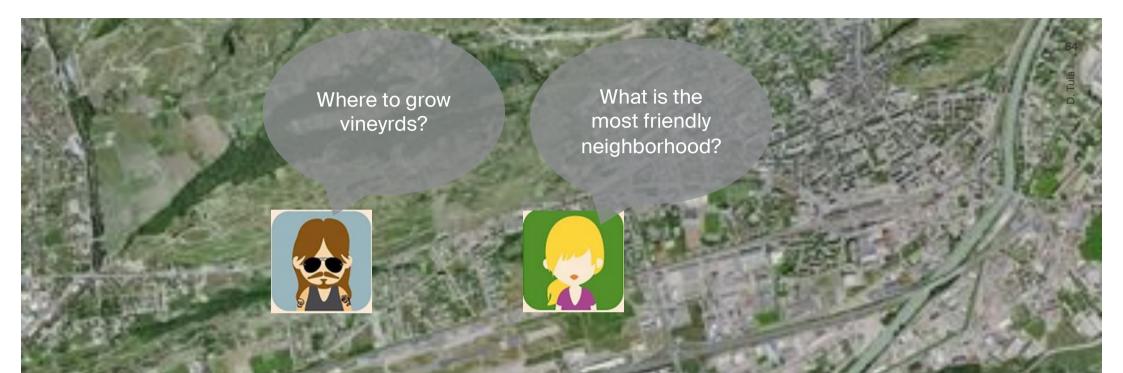
Are our models useful and used?

- Availability of computer vision models makes it easier to use ML in our domain.
- But still we have a series of throwbacks

Problem 1 people are interested by many things

51





We would need one model per theme

Image credits: swisstopc

One model to answer them all

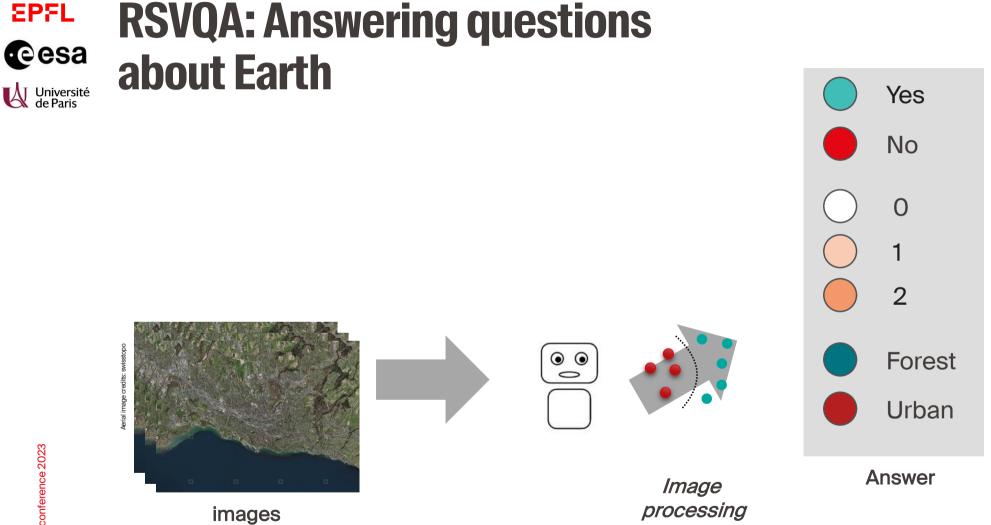
Problem 2 Problem 2 Herek (n(d).triggermania Herek (n(d).triggerman

image: imag

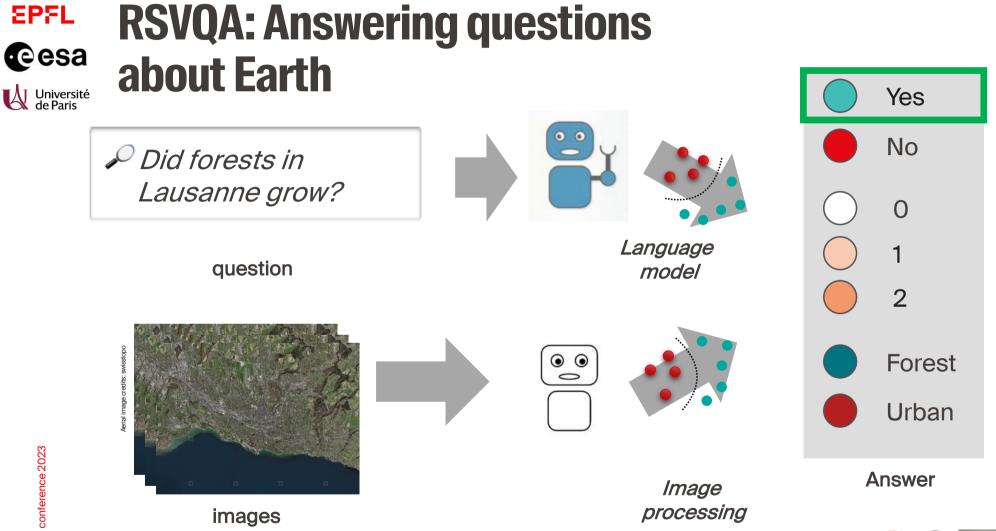
(b, t){

EPFL

Did forests in Lausanne grow?

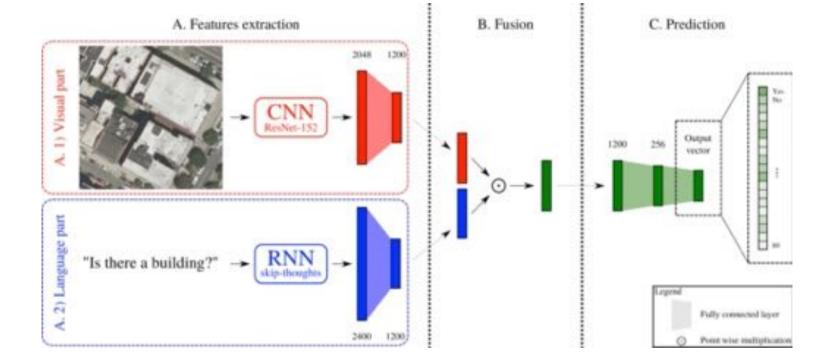


C. Chappuis, V. Zermatten, S. Lobry, B. Le Saux, and D. Tuia. Prompt-RSVQA: Prompting visual context to a language model for remote sensing visual question answering. In CVPRW, New Orleans, LA, 2022.



C. Chappuis, V. Zermatten, S. Lobry, B. Le Saux, and D. Tuia. Prompt–RSVQA: Prompting visual context to a language model for remote sensing visual question answering. In CVPRW, New Orleans, LA, 2022.

EPFL Remote sensing visual question answering



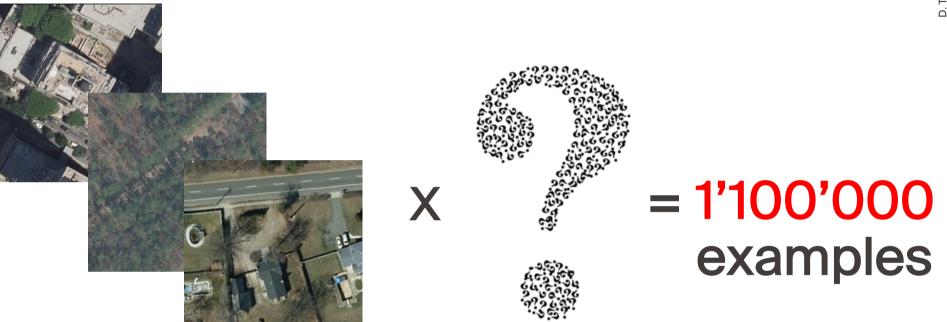
[Lobry, Marcos, Murray, Tuia, IEEE TGRS 2020, https://arxiv.org/abs/2003.07333]

eesa

cnes

EPFL

11'000 Aerial images New York / Philadelphia

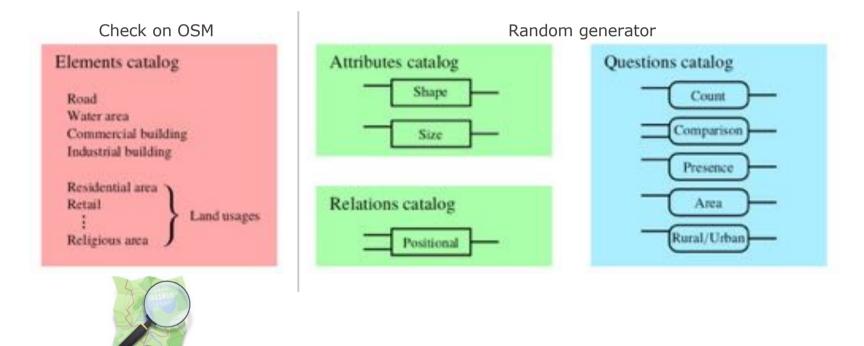


11'000 Aerial images New York / Philadelphia

100 Question Answers

EPFL How did we generate the questions / answers?

We generated {image, question, answer} triplets



EPFL How did we generate the questions / answers?

We generated {image, question, answer} triplets

"How many roads are present in the image?"

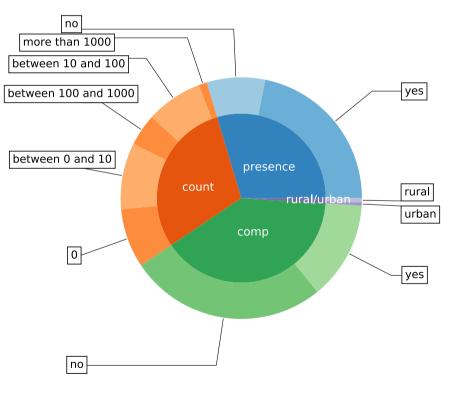
"Is there a small retail place?"

Retail Size Presence Base question

"Is there more buildings at the top of a circular religious place than roads in the image?"

EPFL How did we generate the questions / answers?

- We generated {image, question, answer} triplets
- We again use OSM



EPFL Results

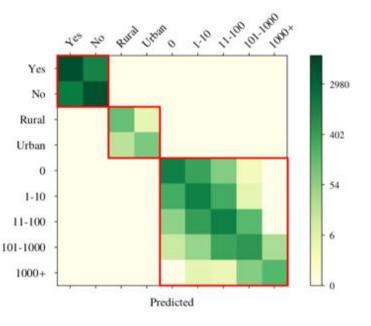
83% overall accuracy!

73% if randomizing the image part

Count questions less accurate

Туре	New York	Philadelphia	
Count	68.63% (0.11%)	61.47% (0.08%)	
Presence	90.43% (0.04%)	86.26% (0.47%)	
Comparison	88.19% (0.08%)	85.94% (0.12%)	
Area	85.24% (0.05%)	76.33% (0.50%)	
AA	83.12% (0.03%)	77.50% (0.29%)	
OA	83.23% (0.02%)	78.23% (0.25%)	

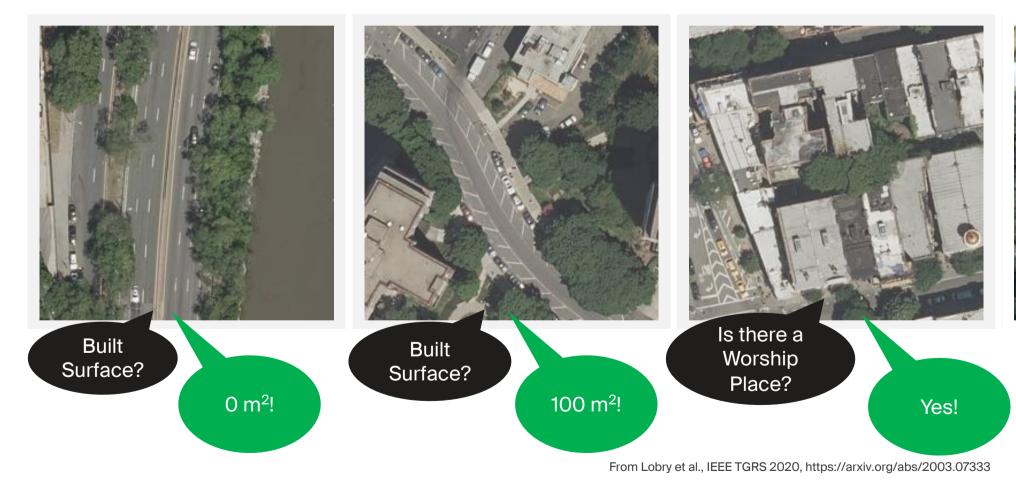
The model can make a good distinction between types of questions



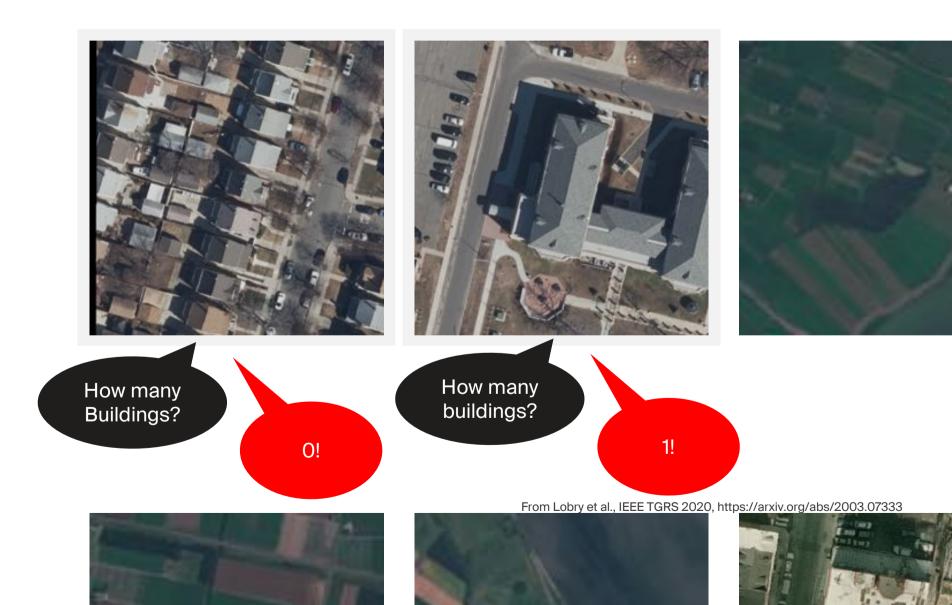
From Lobry et al., IEEE TGRS 2020, https://arxiv.org/abs/2003.07333

66

EPFL Results

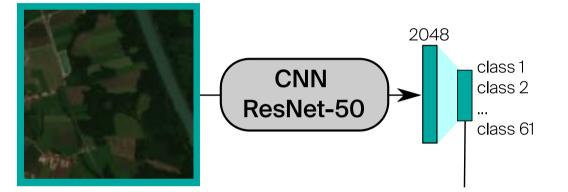


EPFL Results



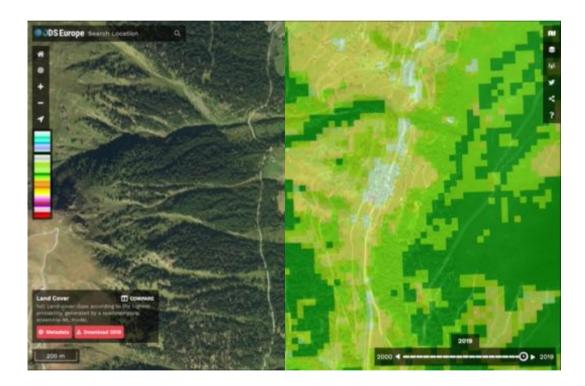
Moving forward: prompting LLMs EPFL Assess modalities separately: adequacy of Feed actual visual predictions in infer visual features & Semantic bottleneck towards interpretation 2048 class 1 **CNN** class 2 **ResNet-50** class 61 Visual model Language model Context: crops, forests and inland waters #answers CAp conference 2023 768 256 Language model In addition to forests, which other Crops and inland waters land cover is present in the scene? distilBERT

EPFL 1. The visual part.



EPFL Learning the visual model

- Images: Sentinel 2 data
 - EU satellite, 10m resolution
 - Data every 5 days, free
- Labels (\rightarrow)
 - Corine Land Cover
 - Updated every 10 years, EU-wise
 - 61 classes
- Model
 - ResNet50 from BigEarthNet *
 - Multi-label classification
 - Predictions passed as words to the LLM



* Sumbul, G., et al., BigEarthNet: A Large-Scale Benchmark Archive for Remote Sensing Image Understanding. IGARSS 2019

EPFL 2. prompting a language model

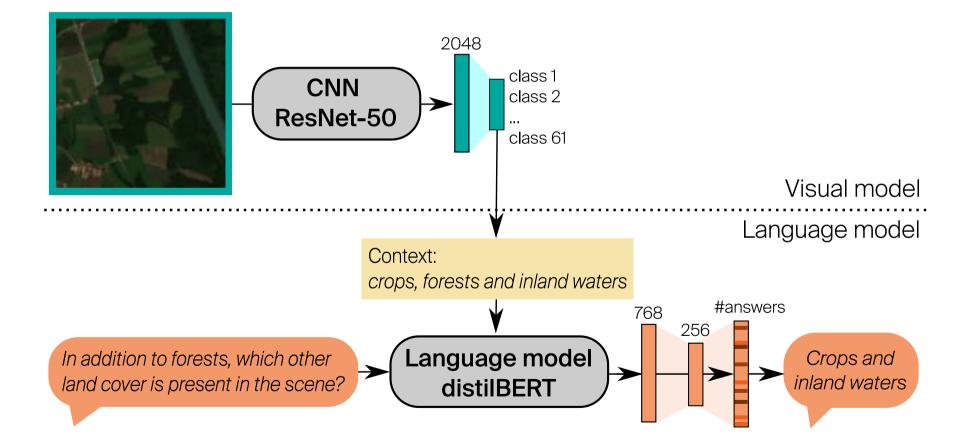
- Manipulate inputs instead of weights
- Add visual keywords to input text
 - Question: In addition to forests, which other land cover is present in the scene?

Context: Land covers are crops, inland waters and forests.

Light fine-tuning for smaller language models

EPFL Moving forward: prompting LLMs

Feed actual visual predictions in inference to a LLM



EXPERIMENT - proof of concept

RSVQA meets BigEarthNet

- From BigEarthNet, and the CORINE Land Cover inventory
- Sentinel-2 images
- 2 types of questions: land cover and yes/no

	Land cover classes present in the image discontinuous urban fabric. inland waters. forests. water courses. urban fabric. agricultural areas. water bodies. pastures. forest and seminatural areas. broad-leaved forest. artificial areas	
	Land cover question	
Martin and	Which L2 land cover classes are in the scene?	
Alter	Forests, inland waters, pastures and urban fabric	
	Land cover classes present in the image	
	discontinuous urban fabric. open spaces with little or no vegetation. urban fabric. transitional woodland/shrub. agricultural areas. heteroge- neous agricultural areas. scrub and/or herba- ceous vegetation associations. burnt areas. land principally occupied by agriculture, with significant areas of natural vegetation. forest and seminatural areas. artificial areas	
	Yes/No question	
States and I	Are some urban fabric present? Yes	

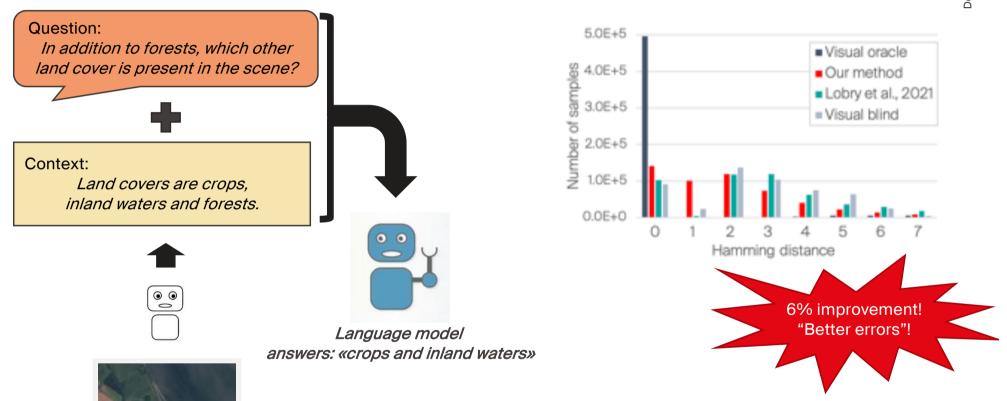
[G. Sumbul, et al., "BigEarthNet: A Large-Scale Benchmark Archive for Remote Sensing Image Understanding", IGARSS, 2019.]

Results on the final task RSVQA

	Mathad	Accuracy		
	Method		Yes / No	Land cover
	Visual oracle	98.81%	99.90%	93.79%
	Visual blind	65.36%	75.85%	17.30%
+ 6% !	RSVQA (Lobry et al. 2021)	69.83%	79.92%	20.57%
	Prompt-RSVQA (ours)	75.40%	86.07%	26.56%

* Restriction of answer space to 1000 answers: 98.9% maximal performance on test set

Better informed language models EPFL



C. Chappuis, V. Zermatten, S. Lobry, B. Le Saux, and D. Tuia. Prompt-RSVQA: Prompting visual context to a language model for remote sensing visual question answering. In IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, 2022.

EPFL Language understanding for enhanced image search

Millions

of image

A sparse residential area with a villa surrounded by forest?

Knowledge-based satellite image retrieval

[Mi et al., IJCAI workshops 2022]

CAp conference 2023

Animal health and behavior

My view on Remote sensing and Al

Advance remote sensing science to monitor and protect Earth Interface disciplines and approaches Bring new, open tools making EO science accessible to anyone

My view on Remote sensing and Al

Advance remote sensing science to monitor and protect Earth

Interface disciplines and approaches

Bring new, open tools making EO science accessible to anyone

