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Résumé

Les planificateurs classiques actuels détectent les in-
stances de planification insolubles au travers d’une recherche
dans l’espace d’états sous-jacent. Dans cet article, nous
montrons cependant qu’il est quelquefois suffisant d’utiliser
un critère incomplet, mais efficace d’un point de vue cal-
culatoire. Nous proposons une méthode permettant de tirer
parti de ce critère, basé sur des techniques de programmation
linéaire et en nombres entiers, dans le cas où il ne permet
pas de conclure. Ce critère est central aux méthodes que
nous proposons pour préciser et enrichir le modèle STRIPS,
dans l’optique de collecter de nouvelles informations à son
propos. Dans le cas où les informations supplémentaires ne
permettent pas de s’assurer de l’insolubilité de l’instance,
elles peuvent être réinvesties dans un algorithme complet
intervenant ensuite, afin de l’accélérer.

Abstract

In order to prove classical planning instances unsolv-
able, state-of-the-art planners resort to a state-space search.
However, we show here that an incomplete, yet computation-
ally efficient criterion is sometimes sufficient to immediately
identify as unsolvable a wide range of planning instances.
Based on linear and integer programming, we show in this
paper how it can be leveraged, were it to fail at first. This
criterion is the keystone of various techniques we propose
to rewrite and enhance the STRIPS model, so as to gather
new information about it. In case the newly-found bits of
information are not sufficient to identify the instance as un-
solvable, they can be reinvested later to speed up a complete
algorithm.

1 Introduction

Current classical planners resort to a search, with the goal of
finding a solution-plan. They often start with the assump-
tion that such a plan exists, and for the past few decades,
significant work has been done on designing more and more
efficient techniques to find solution-plans. However, vari-
ous reasons may lead an instance not admitting any solution.

Search-based planners will then explore the state-space in
its entirety, potentially cutting branches of the search tree,
until they realize no plan can be found. The detection of
states that can not lead to any solution is often a byproduct
of the heuristics used during search: an infinite heuristic
value for an admissible heuristic is synonym of a dead-end
state.

This is why in the recent years, there has been a renewed
interest in detecting unsolvable planning instances, as il-
lustrated by the 2016 Unsat IPC (International Planning
Competition). Various techniques have been developed in
the last couple of decades, such as dead-end formulas [4],
traps [10, 14], and so on. However, all of these methods are
based on the exploration of the state-space.

In this article, we propose to leverage a linear
programming- and integer programming-based criterion to
iteratively refine a planning model, to show its unsolvabil-
ity. The criterion we use is fast to compute, and allows us
to quickly recognize a wide range of unsolvable planning
instances. However, it is not complete, in the sense that
it may not recognize some unsolvable instances as such.
Nevertheless, we show how to use it to iteratively refine
the planning model, and keep gathering additional infor-
mation about the instance with the aim that our procedure
can detect that it is unsolvable.

Most of our techniques to gather information are based
on a simple schema: after testing the solvability of planning
instances Π′ that are derived from the initial planning prob-
lem Π given as input, we deduce additional information
about the problem Π if Π′ is unsolvable. For instance, if
the instance Π′, which is Π where operator 𝑎 was removed,
is proven to be unsolvable, then it means that 𝑎 appears
in all solution-plans of Π. In the case where one can effi-
ciently detect some unsolvable planning instances, then lots
of such derived instances Π′ can be tested successfully. As
the criterion we use is incomplete but fast, even though it
often fails to detect unsolvable instances, it still manages to
help gather new information, as lots of tests can be made in
reasonable time. As more and more information is known



about the planning instance, the mathematical program on
which the criterion is based can also be enriched with the
new knowledge, so that it can detect additional unsolvable
instances.

More generally, being able to detect planning instances
that have no solution can have various applications in itself.
For instance, consider the case where an instance models
the attacks of a malicious user may perform on a system,
with the goal of accessing restricted data. Finding that no
sequence of actions may achieve this shows that the system
is secure.

The paper is organized as follows. In Section 2, we in-
troduce our formalism and notations for classical planning.
In Section 3, we present the mathematical-programming-
based criterion we use throughout this paper. In Section 4,
we show how to design tests to gather new information
about a planning model. In Section 5, we report our exper-
imental trials on standard sets of benchmarks. Section 7 is
devoted to a discussion and perspectives on our findings.

2 Background

STRIPS planning instance A STRIPS planning instance
is a tuple Π = ⟨𝐹, 𝐼, 𝑂, 𝐺⟩ such that 𝐹 is a set of propo-
sitional variables called fluents, and 𝐼 is a set of fluents of
𝐹, called the initial state. 𝐺 is a set of literals of 𝐹, such
that no literal appears at the same time as its negation, and
is called the goal. We will denote 𝐺+ the set of positive
literals of 𝐺, and 𝐺− the set of negative literals. Finally,
𝑂 is a set of operators: operators 𝑎 ∈ 𝑂 are of the form
𝑎 = ⟨pre(𝑎), eff(𝑎)⟩. pre(𝑎) is the precondition of 𝑎 and
eff(𝑎) is the effect of 𝑎, which are both sets of literals of 𝐹.
We will denote eff+ (𝑎) = { 𝑓 ∈ 𝐹 | 𝑓 ∈ eff(𝑎)} the set of
positive effects of 𝑎, and eff− (𝑎) = { 𝑓 ∈ 𝐹 | ¬ 𝑓 ∈ eff(𝑎)}
its negative effects. We will use similar notations to define
pre+ (𝑎) and pre− (𝑎).

Note that we define a version of STRIPS with negative
preconditions. However, we are not any more general than
the original formulation of STRIPS. Indeed, any STRIPS in-
stance with negative preconditions can be translated into an
equivalent instance without negative preconditions in linear
time, and the converse is immediate [6]. The same goes for
negative goals: the original STRIPS formulation only spec-
ified positive goals. We nonetheless allow negative goals
in our formulation of STRIPS, and we progressively take
them into account. But one should keep in mind that most
planning instances (and in particular, the ones used in our
set of benchmarks) come with positive goals only: this is
why we assume 𝐺− is empty unless otherwise specified.

Without loss of generality, we assume that for all op-
erators 𝑎, pre+ (𝑎) ∩ pre− (𝑎) = ∅. We also assume
that eff+ (𝑎) ∩ eff− (𝑎) = ∅, otherwise we can remove
from eff− (𝑎) any fluent also in eff+ (𝑎). In addition,
we will also suppose that eff+ (𝑎) ∩ pre+ (𝑎) = ∅, and

eff− (𝑎) ∩ pre− (𝑎) = ∅, otherwise the redundant fluents
from the effects can be removed. Any planning instance
which does not satisfy these criteria can be transformed, in
polynomial time, into an equivalent instance that complies
with them.

States and plans A state 𝑠 is an assignment of truth values
to all fluents in 𝐹. For notational convenience, we associate
𝑠 with the set of fluents of 𝐹 which are true in 𝑠. An
operator 𝑎 can be applied to states of Π that verify its
preconditions. More formally, for any state 𝑠, if pre+ (𝑎) ⊆ 𝑠

and pre− (𝑎) ∩ 𝑠 = ∅, then we define the result of the
application of 𝑎 to 𝑠 as 𝑠[𝑎] = (𝑠 \ eff− (𝑎)) ∪ eff+ (𝑎).

Given an instance 𝑃 = ⟨𝐹, 𝐼, 𝑂, 𝐺⟩, a plan is a sequence
of operators 𝜋 = 𝑎1, . . . , 𝑎𝑘 from 𝑂 such that there exists a
sequence of states 𝑠0, . . . , 𝑠𝑘 , such that, for all 𝑖 ∈ 1, . . . , 𝑘 ,
the operator 𝑎𝑖 is applicable in 𝑠𝑖−1, so that 𝑠𝑖 = 𝑠𝑖−1 [𝑎𝑖].
A plan is a solution-plan if we have, in addition, 𝑠0 = 𝐼

and 𝐺 ⊆ 𝑠𝑘 . We denote SΠ the set of all solution-plans
to Π. We say that a fluent 𝑓 is established (resp. deleted)
by some occurrence of an operator 𝑎 ∈ 𝑂 in 𝜋 if 𝑓 is false
(resp. true) in some state 𝑠𝑖 , but true (resp. false) after the
application of 𝑎, in state 𝑠𝑖+1 = 𝑠𝑖 [𝑎]. In the rest of this
paper, we will refer to solution-plans as simply plans.

3 Detecting unsolvable instances by LP

This section introduces two equivalent criteria that we use,
and extend, to detect a planning instance’s unsolvabil-
ity. These criteria are incomplete, in the sense that they
can not detect all unsolvable planning instances by them-
selves. However, they require very limited computational
resources, and are fast to run, as they are based on linear
programming, or mathematical programming in general.
We will show later how to leverage those properties in or-
der to make the most of these criteria when they are not
able to detect an instance’s unsolvability by themselves.

3.1 Potential-based argument

The first linear programming formulation that we worked
with is based on the following argument. Suppose that we
have a numerical function Φ : 𝐹 → R+, that associates a
potential to each fluent. We can then naturally define the
potential of a state 𝑠 ⊆ 2𝐹 as Φ(𝑠) =

∑
𝑓 ∈𝑠 Φ( 𝑓 ). If one

can prove that all goal states have a higher potential than
the initial state, but the application of any operator 𝑎 to any
state 𝑠 leads to a state 𝑠′ of lesser (or equal) potential, then
the planning instance has no solution-plan.

Such a function Φ can be found thanks to the following
observation. In any plan, the potential of a state 𝑠′ solely
depends on the previous state 𝑠, and on the operator 𝑎 that
was applied such that 𝑠[𝑎] = 𝑠′. In this case, we will
say that 𝑎 induced an increase in potential of ΔΦ𝑎 (𝑠) =



Φ(𝑠′) − Φ(𝑠). One can remark that there exists an upper
bound for ΔΦ𝑎 (𝑠), which does not depend on 𝑠 but only
on 𝑎. Indeed, in the limit case, all fluents 𝑓 ∈ eff+ (𝑎) are
effectively established by 𝑎, but no fluent 𝑓 ′ ∈ eff− (𝑎) is
destroyed, except when 𝑓 ′ ∈ eff− (𝑎) ∩ pre+ (𝑎). Recall
that we assume, without loss of generality, that eff+ (𝑎) ∩
pre+ (𝑎) = eff− (𝑎) ∩ pre− (𝑎) = ∅.

More formally, let us consider four1 sets of operators,
with regard to some fluent 𝑓 : on the one hand, the operators
that will surely add and surely delete 𝑓 when applied, that
we denote respectively 𝑆𝐴 𝑓 and 𝑆𝐷 𝑓 ; on the other hand,
the operators that could possibly add and possibly delete 𝑓

when applied, respectively 𝑃𝐴 𝑓 and 𝑃𝐷 𝑓 . The latter are
operators that may establish (resp. delete) 𝑓 in the resulting
state 𝑠′ depending on whether 𝑓 is false (resp. true) in the
previous state 𝑠 or not. More formally, the sets are defined
as follows:

• 𝑆𝐴 𝑓 = {𝑎 | 𝑓 ∈ eff + (𝑎) ∩ pre− (𝑎)}
• 𝑆𝐷 𝑓 = {𝑎 | 𝑓 ∈ eff − (𝑎) ∩ pre+ (𝑎)}
• 𝑃𝐴 𝑓 = {𝑎 | 𝑓 ∈ eff + (𝑎) \ pre− (𝑎)}
• 𝑃𝐷 𝑓 = {𝑎 | 𝑓 ∈ eff − (𝑎) \ pre+ (𝑎)}

This leads to the following inequality, which models the
limit case previously presented. This effectively gives us
an upper bound on the change of potential induced by 𝑎

from any state 𝑠, which we denote ΔΦ𝑎 (𝑠). Remark that
the right-hand side is independent of 𝑠.

ΔΦ𝑎 (𝑠) ≤
∑︁

𝑓 s.t. 𝑎∈𝑃𝐴 𝑓

Φ( 𝑓 ) +
∑︁

𝑓 s.t. 𝑎∈𝑆𝐴 𝑓

Φ( 𝑓 ) −
∑︁

𝑓 s.t. 𝑎∈𝑆𝐷 𝑓

Φ( 𝑓 )

Now suppose that, for all operators 𝑎, the right-hand side
of the previous inequation is negative. It means that apply-
ing any operator makes the potential of the state decrease.
As a consequence, states that have a higher potential than
the initial state cannot be reached. Note that, as the potential
of a state is only determined by the potential of the fluents
that are true in this state, and all potentials are positive,
Φ(𝐺) is a lower bound for the potential of any goal-state.
Thus, if we also have that Φ(𝐺) > Φ(𝐼), then the planning
instance has no solution.

The only remaining issue is to check whether such a
potential function Φ exists. As Φ is only determined by
its values on the various fluents, this can be done with
the following set of equations, with the set of variables
𝑉 = {𝑥 𝑓 | 𝑓 ∈ 𝐹}. Intuitively, 𝑥 𝑓 corresponds to the
potential Φ( 𝑓 ) of 𝑓 .

Linear Program 1.
Variables: 𝑉 = {𝑥 𝑓 | 𝑓 ∈ 𝐹}

1Even though only three sets out of the four are needed here, we
introduce all four sets as they will be useful later in the paper.

Constraints: ∑︁
𝑓 ∈𝐺

𝑥 𝑓 −
∑︁
𝑓 ∈𝐼

𝑥 𝑓 > 0 (1)∑︁
𝑓 ∈eff + (𝑎)

𝑥 𝑓 −
∑︁

𝑓 ∈eff − (𝑎)∩𝑝𝑟𝑒+ (𝑎)
𝑥 𝑓 ≤ 0 (𝑎 ∈ 𝑂) (2)

𝑥 𝑓 ≥ 0 ( 𝑓 ∈ 𝐹) (3)

The following proposition follows from the discussion
above.

Proposition 1. Let Π be a STRIPS instance. Suppose that
there exists a solution for the Linear Program 1. Then Π

has no solution.

Note that the converse is not true: not all unsolvable
planning instances are detected by the criterion we propose.

3.2 Dual linear program

The linear program presented in the previous section is hard
to interpret, as the concept of potential we introduced has
no reality outside of the criterion. However, we show in this
section how to transform it into another program that can
equivalently allow us to detect some unsolvable instances,
but whose result is easier to interpret.

To this effect, we resort to Farkas’s lemma. Farkas’s
lemma is related to the well-known fact that in linear pro-
gramming, the primal problem is feasible iff the dual prob-
lem is feasible. One version of this lemma states that exactly
one of the following sets of equations has a solution: either
(1) 𝐴𝑦 ≥ 𝑑 where 𝑦 ≥ 0, or (2) 𝐴𝑡𝑥 ≤ 0 and 𝑑𝑡𝑥 > 0
where 𝑥 ≥ 0, where 𝐴 is a matrix and 𝑥, 𝑦 and 𝑑 vectors of
the appropriate sizes. Let us consider the set of equations
previously mentioned. Applying Farkas’s lemma, it has a
solution iff the following system has no solution:

Linear Program 2.
Let Π = ⟨𝐹, 𝐼, 𝑂, 𝐺⟩ a planning instance. We define

Lop
Π
(𝑉,𝐶) as follows:

Variables: 𝑉 = {𝑦𝑎 | 𝑎 ∈ 𝑂}
Constraints 𝐶:∑︁

𝑎∈𝑆𝐴 𝑓

𝑦𝑎 +
∑︁

𝑎∈𝑃𝐴 𝑓

𝑦𝑎 −
∑︁

𝑎∈𝑆𝐷 𝑓

𝑦𝑎 ≥ 𝛿−𝑓 ( 𝑓 ∈ 𝐹) (4)

𝑦𝑎 ≥ 0 (𝑎 ∈ 𝑂) (5)

where 𝛿−
𝑓
= 1𝐺 ( 𝑓 ) − 1𝐼 ( 𝑓 ) (1𝑆 (𝑥) being the indicator

function of set 𝑆: 1𝑆 (𝑥) = 1 if 𝑥 ∈ 𝑆, and 0 otherwise). In
this context, the variable 𝑦𝑎 corresponds to the number of
times operator 𝑎 is executed in some sequence of actions.
Note that 𝑦𝑎 is positive, but not necessarily integral: this
allows us to obtain a polynomial-time relaxation of the
STRIPS instance. Inequality (4) states that the number of
(possible) establishments of 𝑓 minus the number of sure
destructions of 𝑓 must be greater than or equal to 𝛿−

𝑓
. For



instance, any fluent that appears positively in the goal but
not in the initial state must be established as least once.
This dual version of our original linear program provides
an alternative insight into the meaning of Proposition 1.

Lemma 1. Let Π = ⟨𝐹, 𝐼, 𝑂, 𝐺⟩ be a planning instance,
Lop

Π
(𝑉,𝐶) as defined in Linear Program 2, and 𝜋 a solution-

plan for Π. Let us define 𝑐𝜋 : 𝑂 → N the number of
occurrences of operators of 𝑂 in 𝜋. Then the assignment
𝑌 : 𝑉 → N such that, for all 𝑎 ∈ 𝑂, 𝑌 (𝑦𝑎) = 𝑐𝜋 (𝑎), is a
solution for Lop

Π
.

Proof. Let 𝑌 be as defined above. We will show that 𝑌 is
a solution for Lop

Π
. For each fluent 𝑓 , let us denote 𝑒 𝑓 the

number of times a fluent is established during the execution
of 𝜋, and 𝑑 𝑓 the number of times it is destroyed. Recall that
a fluent 𝑓 is established (resp. deleted) by some occurrence
of an operator 𝑎 ∈ 𝑂 in 𝜋 if 𝑓 is false (resp. true) before
the application of the operator, but true (resp. false) after.
As 𝜋 is a solution plan, we have that:

1𝐺+ ( 𝑓 ) − 1𝐼 ( 𝑓 ) ≤ 𝑒 𝑓 − 𝑑 𝑓 ≤ 1 − 1𝐼 ( 𝑓 ) − 1𝐺− ( 𝑓 )

which can be shown by case disjunction on whether 𝑓 is in
𝐼, 𝐺+ or 𝐺−

2. We denote the inequations above in a more
concise way:

𝛿−𝑓 ≤ 𝑒 𝑓 − 𝑑 𝑓 ≤ 𝛿+𝑓

In addition, in the extreme case, 𝑓 is established in 𝜋 at most
as many times as there are occurrences of operators 𝑎 with
𝑓 ∈ eff+ (𝑎). Remark that 𝑆𝐴 𝑓 and 𝑃𝐴 𝑓 form a partition of
the set {𝑎 | 𝑓 ∈ eff+ (𝑎)} 3. Hence

𝑒 𝑓 ≤
∑︁

𝑎∈𝑆𝐴 𝑓

𝑌 (𝑦𝑎) +
∑︁

𝑎∈𝑃𝐴 𝑓

𝑌 (𝑦𝑎)

Similarly, the only operators 𝑎 ∈ 𝑂 whose applications are
guaranteed to destroy 𝑓 are such that 𝑓 ∈ pre+ (𝑎)∩eff− (𝑎).
Thus,

𝑑 𝑓 ≥
∑︁

𝑎∈𝑆𝐷 𝑓

𝑌 (𝑦𝑎)

By combining both inequations above, we have

𝛿−𝑓 ≤ 𝑒 𝑓 − 𝑑 𝑓

≤
∑︁

𝑎∈𝑆𝐴 𝑓

𝑌 (𝑦𝑎) +
∑︁

𝑎∈𝑃𝐴 𝑓

𝑌 (𝑦𝑎) −
∑︁

𝑎∈𝑆𝐷 𝑓

𝑌 (𝑦𝑎) (6)

which means that 𝑌 satisfies the constraints of the form
of inequation (4) of Lop

Π
. As a consequence, as 𝑌 is also

positive, 𝑌 is a solution to Lop
Π

.

The contrapositive of Lemma 1 is an alternative proof
that, if Lop

Π
has no solution, then neither has Π. But it

allows us to show more than that, as we have the following
corollaries, that we use later on:

2Even though we suppose 𝐺− empty now, we introduce the notation
and argument here, for later use.

3Recall that we suppose that, for all 𝑎 ∈ 𝑂, pre+ (𝑎) ∩ pre− (𝑎) =

eff+ (𝑎) ∩ pre+ (𝑎) = eff− (𝑎) ∩ pre− (𝑎) = ∅

Corollary 1. If Lop
Π

has no integral solution, then the as-
sociated planning instance Π has no solution.

Proof. The proof is immediate, as each operator appears an
integral number of times in any solution-plan 𝜋.

Corollary 2. Optimising the value of 𝑦𝑎 within Lop
Π

leads
to a bound on the number of times 𝑎 ∈ 𝑂 must occur in a
plan.

Linear Program 2 is, in fact, a linear programming for-
mulation of the state equation heuristic [2], as previously
shown in [12]. Its efficiency for detecting unsolvable plan-
ning instances has been shown before, as it is part of the
Aidos planner, which won the Unsat IPC in 2016 [13]. The
planner uses the LP formulation of the operator counting
heuristic to detect dead-ends during search, working on a
finite domain representation (FDR) of the instance. We,
however, do not resort to search, but show how to rewrite
the model directly, potentially changing the linear program
when doing so.

Even though we introduced Lop
Π

as a linear program,
we showed with Lemma 1 that one can also see it as an
integer program. Solving an integer program is notoriously
harder and slower than solving a linear program. As the
integral solutions of the set of equations form a subset of
its set of rational solutions, testing the solvability of the
program over integral solutions is more likely to prove that
the associated planning instance has no solution. Note that
Farkas’s lemma does not apply in the integral case, hence
the need for Lemma 1.

In the next section, we show that, in the case where the
criterion introduced here fails, it can still be leveraged to
gather additional information about Π.

4 Enhancing the planning problem

This section is dedicated to extending and adding informa-
tion to the initial planning instance, mainly with the goal
of proving it unsolvable. Through various methods, we
either add or remove elements from the input model Π, or
add information about Π that is not directly encodable into
the model, but that can nevertheless still be included in the
linear program or to make deductions. In order to do so,
we will resort to two kinds of methods. In the first ones, we
build variations of Π so that, if one of these variations can
be deemed unsolvable through the previous linear program,
then some additional information about Π can be deduced.
In the second method, we do not consider per se a variation
Π′ of Π, but we directly modify the linear program Lop

Π

associated to Π, so that if it is unsolvable, we can deduce
new specific information about Π.

In the following, we call operation any such method. In
the specific case where the operation answers a boolean
question (e.g. Is an action removable?), we call it a test.



In the rest of this section, we illustrate the previous gen-
eral principles through various operations, that allow us to
find new information about the planning instance given as
input. As our goal is to detect unsolvable instances, in the
following, we assume that the criterion could not detect,
at first, that the instance is unsolvable and that we have to
gather additional information in order to do so.

4.1 Operator counts and landmarks

Landmark detection An operator 𝑎 ∈ 𝑂 is a landmark
for Π if 𝑎 occurs at least once in every solution-plan. We
maintain through our procedure a set 𝐿 ⊆ 𝑂 of landmarks.
With regard to our framework, we can test if an operator is
a landmark by removing it from the model and testing if the
instance can be deemed unsolvable. More formally,

Lemma 2. Let Π = ⟨𝐹, 𝐼, 𝑂, 𝐺⟩ and 𝑎 ∈ 𝑂. If Π |𝑎 =

⟨𝐹, 𝐼, 𝑂 \ {𝑎}, 𝐺⟩ is unsolvable, then 𝑎 is a landmark.

This leads us to defining the landmark detection test, as
introduced below, where Π |𝑎 is defined in the lemma above.

LMDet
If Π |𝑎 is unsolvable
then add 𝑎 to the set of landmarks 𝐿

Operator count One can generalize the notion of land-
mark, by counting the least number of times an operator
appears in any solution-plan. This is why we maintain a
function 𝑛− : 𝑂 → N, such that 𝑛− (𝑎) is (a lower bound
on) the least number of occurrences of action 𝑎 in any plan.
Likewise, we define 𝑛+ (𝑎) as (an upper bound on) the max-
imum number of times 𝑎 appears in any plan. With these
notations, 𝑎 ∈ 𝑂 is a landmark iff 𝑛− (𝑎) ≥ 1.

Reasoning on the number of occurrences of some opera-
tor 𝑎 ∈ 𝑂 can be done through Linear Program 2. Indeed,
as the variables are associated to the number of occurrences
of each operator in some sequence of actions, one only has
to find lower and upper bounds for each variable 𝑦𝑎 in a so-
lution of LP 2. This is why one can compute approximate
values for 𝑛+ (𝑎) and 𝑛− (𝑎) through an integral variation of
our linear program, that we present below:

Integer Program 1.
Let Π = ⟨𝐹, 𝐼, 𝑂, 𝐺⟩ a planning instance, with 𝑂 =

{𝑎1, . . . , 𝑎𝑚}, and Lop
Π
(𝑉,𝐶) the associated Linear Pro-

gram 2. For 𝑎 ∈ 𝑂, let us define Lopt
Π

(𝑉,𝐶) (𝑎) such that:
Variables 𝑉 = {𝑦𝑎 | 𝑎 ∈ 𝑂}
Constraints 𝐶: Same as Lop

Π

Objective function 𝑔 : N𝑚 −→ N:

𝑔 : 𝑦𝑎1 , . . . , 𝑦𝑎𝑚 ↦−→ 𝑦𝑎

Lemma 3. Let Π a planning instance, 𝑎 ∈ 𝑂 an operator
and consider integer program Lopt

Π
(𝑉,𝐶) (𝑎) with objective

function 𝑔. Then minimizing (resp. maximizing) 𝑔 yields a
lower (resp. an upper) bound on the value of 𝑛− (𝑎) (resp.
𝑛+ (𝑎)).

Proof. The proof is a consequence of Lemma 1. Let us
show the case where 𝑔 is minimized, as the proof for the
other case is mostly identical. We denote 𝑛−L the value
obtained by minimizing 𝑔 in Lopt

Π
(𝑉,𝐶) (𝑎), where 𝑎 ∈ 𝑂

is fixed. Suppose for a contradiction that 𝑛− (𝑎) < 𝑛−L . Then
there exists a plan 𝜋𝑎 where 𝑎 occurs exactly 𝑛− (𝑎) times,
by definition. By Lemma 1, there exists a solution 𝑌𝜋𝑎 for
Lop

Π
where 𝑌𝜋𝑎 (𝑎) = 𝑛− (𝑎) < 𝑛−L , which contradicts the

optimality of 𝑛−L . Consequently, we have 𝑛−L ≤ 𝑛− (𝑎).

OpCount+ (𝑎)
If the value 𝑛+L obtained by maximizing 𝑔 over N
in Lopt

Π
(𝑉,𝐶) (𝑎) is bounded

then set the current value of 𝑛+ (𝑎) to 𝑛+L

OpCount− (𝑎)
If the value 𝑛−L obtained by minimizing 𝑔 over N
in Lopt

Π
(𝑉,𝐶) (𝑎) is non-zero

then set the current value of 𝑛− (𝑎) to 𝑛−L
In the rest of this paper, we will often use the nota-

tion OpCount(𝑎) to refer to the successive application of
OpCount− (𝑎) and OpCount+ (𝑎). As experimental trials
show that OpCount− does not find all landmarks found by
the test LMDet, OpCount− does not make it redundant.

Using operator counts Once non-trivial values for some
𝑛+ (𝑎) or some 𝑛− (𝑎) has been found (i.e. a finite or non-
zero value, respectively), one can reintroduce it into the
linear program in the form of additional constraints. These
constraints can be introduced in either Lop

Π
or Lopt

Π
, as both

programs use the same sets of variables and constraints.
As the variables of the linear programs correspond to the
number of occurrences of operators in some plan, adding
these constraints is straightforward for every 𝑎 ∈ 𝑂:

𝑦𝑎 ≤ 𝑛+ (𝑎)
𝑦𝑎 ≥ 𝑛− (𝑎)

4.2 Detection of removable actions

This section is concerned with finding operators 𝑎 ∈ 𝑂 that
never appear in any solution-plan. Even though some such
operators can be detected statically by the parser of Fast
Downward, some others require additional computation.
We present various techniques that allow us to detect if an
operator can be immediately removed from the planning
instance, without altering its set of solutions.

Through a modification of the linear program We start
by extending Lop

Π
into Lro

Π
(𝑎) through the addition of the

constraint 𝑦𝑎 ≥ 1. If Lro
Π
(𝑎) has no solution, then Π has



no solution where 𝑎 occurs at least once, and 𝑎 can thus be
removed from the model.

We do not elaborate on this argument further, as it is a
special case of the technique seen in Section 4.1. Indeed,
it is equivalent to show that 𝑛+ (𝑎) = 0, as it ensures that 𝑎
does not occur in any solution-plan. However, this argument
allows us to find removable operators that are not detected
by a test proposed later in this subsection.

Unreachable preconditions A simple way to prove that
some operator 𝑎 will never be part of any plan, is to
prove that no reachable state satisfies its precondition.
This can be done by testing that the planning instance
Π

pre
𝑎 = ⟨𝐹, 𝐼, 𝑂, pre(𝑎)⟩ is unsolvable.
Removing some operators relaxes the linear program

Lop
Π

, by the deletion of some of the associated variables
and constraints. As a consequence, it can help prove some
instances unsolvable. We introduce below the notation for
the associated test:

PreImp
If Πpre

𝑎 is unsolvable
then remove 𝑎 from the set of operators 𝑂

Dead-end operators As it is possible to test whether or
not there exists a reachable state where 𝑎 can be applied,
it is natural to ask the opposite: does 𝑎 always lead to a
dead-end, where no goal state can be reached?

This paragraph is dedicated to finding such operators,
called dead-end operators. In order to do so, we need to
restrict ourselves to the few fluents that appear in all states
resulting from the application of 𝑎, that is to say, the fluents
that are true after 𝑎 is applied either because of the effects of
𝑎, or by inertia. Indeed, these fluents are the only ones for
which we have enough information about their truth value to
reason about. Let 𝐹𝑎 = fluents(pre(𝑎)) ∪ fluents(eff(𝑎)).
For any set 𝑆 of literals of 𝐹, and 𝐸 ⊆ 𝐹, we note 𝑆 |𝐸
the projection of 𝑆 over the fluents 𝐸 . Likewise, we denote
𝑎 |𝐸 = ⟨pre(𝑎) |𝐸 , eff(𝑎) |𝐸⟩ the projection of operator 𝑎 over
𝐸 . For any 𝑂′ ⊆ 𝑂, we also note 𝑂′

|𝐸 = {𝑎 |𝐸 | 𝑎 ∈ 𝑂′}.
This leads us to the following lemma, for which the proof
is skipped due to space limitations:

Lemma 4. LetΠ = ⟨𝐹, 𝐼, 𝑂, 𝐺⟩ be a planning instance and
Πpost = ⟨𝐹𝑎, 𝐼

post
𝑎 , 𝑂 |𝐹𝑎

, 𝐺 |𝐹𝑎
⟩, where 𝐼

post
𝑎 = ((pre+ (𝑎) \

eff− (𝑎)) ∪ eff+ (𝑎)) ∩ 𝐹𝑎. If Πpost
𝑎 is unsolvable, then 𝑎 is a

dead-end operator in Π.

ActDLock
If Πpost

𝑎 is unsolvable
then remove 𝑎 from the set of operators 𝑂

4.3 Extended preconditions and goals

In this section, we propose various methods to find more
precise preconditions for operators. More precisely, we try

to add new fluents to operators’ positive or negative precon-
ditions. Suppose for instance that some fluent 𝑓 can only
be true if some other fluent 𝑓 ′ is true. Then any operator
𝑎 such that 𝑓 ∈ pre+ (𝑎) can be extended by adding also
𝑓 ′ to pre+ (𝑎). These more precise preconditions make the
program richer and hence more likely to detect unsolvable
instances. Similarly, the negative preconditions of opera-
tors can be extended, and by the same reasoning, so can
the goal. In addition to that, we introduce negative goals:
fluents that have to be false in any goal state.

In the rest of this section, we propose several ways to
extend preconditions and goals.

Extending the goal The previous argument can also be
applied to the goal, and help us add new fluents to the
goal. Indeed, let 𝑓 ∈ 𝐹, and Π𝐺

+ 𝑓
= ⟨𝐹, 𝐼, 𝑂, 𝐺 ∪ { 𝑓 }⟩.

If Π𝐺
+ 𝑓

is unsolvable, then 𝑓 can be added to the negative
goals of Π. Indeed, no goal state 𝑠𝐺 such that 𝑠𝐺 |= 𝑓

is reachable: necessarily, in any goal state 𝑠𝐺 , we have
𝑠𝐺 |= ¬ 𝑓 . Conversely, let Π𝐺

− 𝑓
= ⟨𝐹, 𝐼, 𝑂, 𝐺 ∪ {¬ 𝑓 }⟩. If

Π𝐺
− 𝑓

is unsolvable, then 𝑓 can be safely added to the goals
of Π without changing the set of solutions.

We define below the test that allows us to detect if a fluent
can be added to the negative goals.

FNegGoal
If Π𝐺

+ 𝑓
is unsolvable

then add 𝑓 to the negative goals of Π

Taking negative goals into account The linear programs
we presented earlier do not make use of the negative goals
of the planning instance. Indeed, they usually do not appear
in the STRIPS model, as they can be avoided by rewriting
the instance during parsing time. However, the previous
argument allows us to find such negative goals, and it would
be costly to rewrite the whole instance to convert them into
positive goals. As such, we show how to take these negative
goals directly into account in our linear program.

The key elements have already been introduced in the
proof of Lemma 1, where we defined for each 𝑓 ∈ 𝐹 the
value 𝛿+

𝑓
= 1−1𝐼 ( 𝑓 )−1𝐺− ( 𝑓 ). 𝛿+

𝑓
serves as an upper bound

on the difference on the number of times 𝑓 is established
and the number of times it is destroyed, in any plan.

With a proof that is very similar to the one that leads to
Equation 6 in the proof of Lemma 1, one can show that the
following equation holds, for any fluent 𝑓 :

∑︁
𝑎∈𝑆𝐴 𝑓

𝑦𝑎 −
∑︁

𝑎∈𝑃𝐷 𝑓

𝑦𝑎 −
∑︁

𝑎∈𝑆𝐷 𝑓

𝑦𝑎 ≤ 𝛿+𝑓 (7)

Note that the above equation is symmetrically equivalent
to Equation 4, found in the original Linear Program 2, that
we recall below. In the initial formulation, the significant



number of positive preconditions allows us to have non-
empty sets of the form 𝑆𝐷 𝑓 , thus adding negative variables
in the left-hand side of the inequation. These negative
variables penalize the whole sum, and make it harder to
reach the threshold of 𝛿−

𝑓
given in the right-hand side. As

our goal is to make the linear program unsatisfiable, the
more positive preconditions we have, the better.

∑︁
𝑎∈𝑆𝐴 𝑓

𝑦𝑎 +
∑︁

𝑎∈𝑃𝐴 𝑓

𝑦𝑎 −
∑︁

𝑎∈𝑆𝐷 𝑓

𝑦𝑎 ≥ 𝛿−𝑓

The same case can be made for negative preconditions
and Equation 7: negative preconditions contribute to popu-
lating sets of the form 𝑆𝐴 𝑓 , which in turn further constraint
the inequation. In addition, note that having negative goals
also contributes to making the inequation harder to sat-
isfy, by lowering the bound 𝛿+

𝑓
on the right-hand side. As

negative goals only appear in variables 𝛿+
𝑓
, without negative

preconditions, there would be little interest in seeking to de-
tect them. In addition, negative precondition do not affect
the final expression of Equation 4, but only affect Equa-
tion 7. As such, negative goals and negative preconditions
are closely intertwined.

4.4 Fluent mutexes and unreachable fluents

A fluent mutex is a set of fluents 𝑀 ⊆ 𝐹 for which all states 𝑠
accessible from the initial state 𝐼 are such that 𝑠 ̸ |= 𝑀 . Some
tests presented previously can be seen as testing whether
some subset 𝑀 ⊆ 𝐹 is a fluent mutex. Let us consider for
instance the PreImp test presented in Section 4.2: for some
operator 𝑎 ∈ 𝑂, checking that Π

pre
𝑎 = ⟨𝐹, 𝐼, 𝑂, pre(𝑎)⟩

is unsolvable (and thus that operator 𝑎 can be removed
from the instance) is equivalent to checking that pre(𝑎) is a
mutex. However, our criterion allows us to check if any set
of fluents 𝐹′ ⊆ 𝐹 is a mutex, by testing the unsolvability of
Πmut

𝐹′ = ⟨𝐹, 𝐼, 𝑂, 𝐹′⟩.
FMut

If Πmut
𝐹′ is unsolvable

then 𝐹′ is a fluent mutex
The criterion does not detect all fluent mutexes, and each

candidate set of fluents has to be tested individually. Thus,
not all fluent mutexes can be detected in reasonable time, as
there exists an exponential number of candidates. Finding
which sets are interesting to test is a problem in itself; even
more so since one has to know how to make use of the
newly-found information that some 𝑀 ⊆ 𝐹 is a mutex.

In the general case, we could not find a way to reinvest
into the linear program the knowledge that a set of fluents is
a mutex. Indeed, Linear Program 2 reasons over the number
of times operators (have to) occur in a plan. As a conse-
quence, we do not have any obvious way to reason about
properties concerning states, which is precisely what fluent

mutexes are. For that reason, we do not include in our rou-
tine a computation of mutexes through our linear program,
even though we can detect a range of fluent mutexes.

However, some fluents are always false, in the sense that
no plan will ever establish them. We call the fluents un-
reachable fluents, and they can be detected with the same
argument as above:

FReach( 𝑓 )
If Πmut

{ 𝑓 } is unsolvable
then 𝑓 is a an impossible fluent

Even though these fluents appear very rarely, as will be
shown in the experimental trials, it remains linear to test for
all fluents whether they are unreachable or not: thus, the
computational burden is significantly lower than for other
fluent “mutexes”. When an unreachable fluent is detected,
one can project the whole instance on fluents 𝐹 \ { 𝑓 }.
Theoretically, one could also remove operators that have 𝑓

in their positive preconditions: however, any such operator
𝑎 would also be detected by test PreImp(𝑎), which is more
likely to succeed.

5 Experimental evaluation

Our implementation was done in Python 3.10, basing our-
selves on the Fast Downward parser [8]. For linear pro-
grams, we resorted to the GLOP solver [11], while inte-
ger programs were solved with Gurobi [7]. We also used
Google ORTools [11] to interface between our program and
the solvers. We ran our experiments on a machine running
Rocky Linux 8.5, powered by an Intel Xeon E5-2667 v3 pro-
cessor, with a 30-minutes cutoff and using at most 16GB of
memory per instance. Our code is available online 4.

In addition to the evaluation of the linear program, we
also implemented a procedure based on the observations
of Section 4 . The main loop of this procedure consists
in executing sequentially a predetermined list of operations
and tests, until the instance is detected as unsolvable or the
list is depleted. We elaborate further on this in Section 5.2.

We wished to evaluate our program on two different as-
pects: first, its ability to detect unsolvable instances, and
second, its ability to find additional information when it
could not conclude.

Our set of benchmarks consists of the unsolvable in-
stances from the unplannability track of the International
Planning Competition 2016 (Unsat IPC), which consists of
unsolvable instances. The Unsat IPC also included solv-
able instances, which we tested our program on, as a sanity
check, with success.

4https://github.com/arnaudlequen/MPRefinement

https://github.com/arnaudlequen/MPRefinement


Set Unsat Total
bag-transport 19 29
bottleneck 25 25
cave-diving 1 25
chessboard-pebbling 23 23
over-tpp 2 30
pegsol-row5 14 15
tetris 20 20
Remaining 0 180

Total 104 347

Table 1: Summary of the results returned by the LP-based crite-
rion, run on the Unsat planning competition benchmark set. Each
line corresponds to a domain: a set of instances modelling similar
problems. The first column reports instances on which our crite-
rion succeeds, while the second column reports the total number
of instances in the benchmark set. Domains for which no instance
could be solved are summed up in the last line labeled Remaining.

5.1 LP-based criteria

In this section, we show that our LP-based criterion suffices
to detect a wide range of unsolvable planning instances.
Our results are reported in detail in Table 1.

In essence, about 30% of all instances of the Unsat IPC
are almost immediately found to be unsolvable by the sole
use of the criterion. These results however vary greatly
from one domain to the other, in a very dichotomous fash-
ion: either the domain is (almost) entirely solved through
the criterion, either few to no instances can be deemed un-
solvable. In the case of domain bag-transport, which seems
to be in-between, all instances the criterion has been tried
on are actually found to be unsolvable: however, as the last
10 instances are too big to be parsed, we could not run the
test on them. We can also note that both linear- and integer-
programming-based criteria yield the same results, and that
solving the IP-based program did not allow us to improve
our results.

Both programs are however very lightweight: in every
case, building and solving the program required less than a
few seconds. In most cases, the criteria required little more
than a few tenths of a second to complete. This further
justifies our use of the program in the iterative procedure
that we present in the next section.

Our program fails entirely on some domains, where no
instance can be solved. While this is often because our cri-
terion simply fails to detect the instance’s unsolvability, this
can also be due to the size of the model. This is the case
of bag-gripper, where the first instance has 5681 fluents
and 60604 operators, which prevents us from building the
associated linear program. In our assessments of the per-
formances of the criteria, the limitation always came from
memory.

5.2 Iterative refinement of the model

In the case where the criterion did not immediately detect
that an instanceΠ is unsolvable, one can resort to the several
operations previously introduced. In addition, the order in
which operations are executed is also critical. Consider for
instance an operator 𝑎 that is both recognized as a landmark
and as a removable operator by our operations. In the
case where the operator is first removed, then it can not be
detected as a landmark, and we thus missed an opportunity
to return that the instance is unsolvable. In the case where
𝑎 is first detected as a landmark, then our routine terminates
successfully by detecting that the instance is unsolvable.

5.2.1 Sequences of operations

We present below the different lists of operations that we
chose. Note that all sequences start and end with a simple
test of solvability with the criterion: initially with only the
information contained in the STRIPS model, and then with
all information that could be gathered after all operations.

Linear This sequence comprises all tests and operations
that are linear in the size of the instance, i.e. that only
require one argument. We tried to put first the tests that
were the most likely to succeed, so that the followings tests
and operations that come after have more information to
work with. We successively apply the following tests on all
relevant elements, in that order: LMDet, PreImp, OpCount,
FReach, and FNegGoal. By that, we mean that we run
LMDet(𝑎) for all 𝑎 ∈ 𝑂, then PreImp(𝑎) for all 𝑎 ∈ 𝑂, etc.

OperatorPreImpossible As will be reported later, the
PreImp tests that check an operator’s reachability are our
most successful ones. We wished to gauge the time it
requires and its possible impact on the model by itself.

OperatorDeadLocks Even though we choose this name
to contrast with the OperatorPreImpossible sequence, this
sequence tests both the reachability (through PreImp) and
co-reachability (through ActDLock) of an operator. In our
trials, no operator could be shown to be a deadlock, even
when we tested after the Linear sequence: as a consequence,
we only include this sequence for the sake of completeness.

OperatorCount This sequence consists in finding lower,
then upper bounds on the number of times each operator has
to appear in any plan. It aims to show that a linear number
of integer programs to optimize can be done in reasonable
time, while also providing interesting information.

5.2.2 Results

We present our results below. As we prune out instances
that can be immediately identified as unsolvable, domains



Operators Others
Set Diff. PreImp OpCount Removed LMDet FReach FNegGoal

cave-diving (14) +9 10.0% 14.1% 10.4% 1.1% 4.8% 3.0%
diagnosis (19) 0 0% 57.0% 11.6% 18.3% 4.6% 17.6%
doc-transfer (5) 0 13.0% 26.4% 27.9% 1.7% 0.0% 39.8%
over-nomystery (2) 0 33.4% 25.7% 34.8% 2.1% 0% 7.4%
over-rovers (8) 0 27.9% 17.2% 29.3% 0% <0.1% 0%
over-tpp (8) 0 7.4% 54.8% 24.7% 0.3% 0.3% 0%
pegsol (24) +24 13.6% N/A% 13.6% 0.8% N/A% N/A%
sliding-tiles (20) 0 0% 0% 0% 0% 0% 69.2%

Table 2: Statistics for the Linear sequence. The first column with the name of the domain also reports the total number of instances
for which the procedure terminated entirely within the time and memory limits. The “Difference” (Diff.) column shows the number
of instances that could be found unsolvable during the execution of the procedure, compared to the single use of the criterion reported
in Table 1. The next set of columns shows stats for operations related to the deletion of operators. The first pair of columns show the
percentage of success of each test, while the last column of the set shows the average total percentage of operators pruned at the end of
the sequence of tests. The last three columns show the percentage of success of three other tests. N/A values indicate that no such test
was performed as the program terminated before.

that are immediately found unsolvable by the criterion are
not reported.

Linear sequence Table 2 shows statistics for the Lin-
ear sequence. The main goal of our routine is to extract
additional information from the model, so that another pro-
cedure that comes after can more easily show it unsolv-
able. However, we could notice that our algorithm was
sometimes enough to detect unsolvable instances that are
otherwise not detected as such by the criterion. There are
few examples of such instances (about 9.5% of the entire
benchmark set), and they are grouped in only two domains
(cave-diving and pegsol). Nonetheless, they suffice to show
that a well-chosen sequence of operations can sometimes
replace a search, and that our work paves the way for further
research in that regard.

In the cases where our procedure could not conclude,
it still manages to gather valuable information about the
planning instance. For example, on some domains, almost
a third of all operators are pruned on average, among in-
stances on which our procedure terminates.

The termination of our procedure is, however, the main
issue of this sequence of operations, which is too compu-
tationaly costly, and often stops early because of the time
and memory limits imposed. In some domains, very few
instances could be run through the entire sequence of op-
erations: such domains include over-nomystery, where this
sequence terminated on only 2 instances out of the 24 that
could be parsed.

Individual tests Table 3 summarizes the statistics for the
other sequences, that mostly consists of series of one or two
of the same operations. However, it does not report compre-
hensive results for all remaining sequences: indeed, in the

case of the OperatorDeadLock sequence, no test answered
positively. Thus, no dead-end operator could be found.

Nonetheless, the results for the other sequences of oper-
ations are encouraging. Be it for the sequence centered on
PreImp or the one focused on OpCount operations, a sig-
nificant proportion of operators could be removed. In some
cases, it suffices to show that the instance was not solvable,
as is the case for the cave-diving or pegsol domains. How-
ever, the time required for the computation is significant,
which is discussed in the next section.

Note that these sequences of tests are not as powerful as
the Linear sequence, when it comes to detecting unsolvable
instances. This seems to indicate that the combination of
different kinds of operations is crucial to draw conclusions,
and studying their interactions is crucial in designing more
powerful sequences.

6 Related work

The surge in interest for unsolvability detection, in the last
decade, has been embodied by the first Unsolvability Plan-
ning Competition in 2016. The competition saw various
adaptations of techniques that have shown themselves effi-
cient for finding plans, in a state-space search. Such meth-
ods include heuristics specifically tailored for unsolvability
detection, such as a Merge & Shrink-based heuristic [9]
(which precedes the competition). Such heuristics rely on
abstractions that do not preserve distance, but merely solv-
ability.

Another heuristic that was successfully adapted was the
operator-counting heuristic [2, 12, 18]. The heuristic is
based on a relaxation of the orderings of the operators. Pre-
vious works showed that it admits a linear programming for-
mulation, similar to the Linear Program 1 that we propose.



OperatorPreImpossible OperatorCount
Set Cpt Rem. Diff. Time Cpt OpCount− OpCount+ Rem. Diff. Time
bag-barman 4 77.2% 0 1177.8 0 . . . . .
cave-diving 17 6.5% +4 147.8 17 0.9% 28.0% 7.0% 0 329.3
diagnosis 20 0% 0 6.4 20 16.9% 96.3% 19.5% 0 91.6
document-transfer 13 0% 0 475.7 8 1.7% 50.7% 29.8% 0 643.2
over-nomystery 10 18.8% 0 587.8 3 1.4% 87.2% 3.9% 0 746.2
over-rovers 11 21.9% 0 370.2 9 0% 62.4% 5.2% 0 455.1
over-tpp 14 <0.1% 0 268.1 9 0.3% 65.4% 20.2% 0 428.8
pegsol 24 16.4% +6 0.6 24 0% 8.2% 3.0% +22 0.51
sliding-tiles 20 0% 0 5.6 20 0% 0% 0% 0 19.4

Table 3: Performances of the individually run operations. The Completed (Cpt) columns show the number of instances the sequence
terminated on, the Diff. columns show the number of instances solved thanks to the iterative refinement, and the Time columns show,
in seconds, the average time per instance. The Rem. columns show the average percentage of operators that could be removed thanks
to the operation. OpCount+ and OpCount− columns report the average percentage of success of their respective operations.

However, while we only optimize the variable associated to
the count of a single operator, the objective function that
they minimize is the total cost of the plan. The adaptation
of the linear program to the case of unsolvability detection,
was carried out by the Fast Downward-based unsolvability
planner Aidos [13]. It consists in checking the existence of
a solution, in the same way as for Linear Program 2. How-
ever, Aidos uses this component in a state-space search, in
order to detect dead-ends.

More generally, be it in unsolvable or in solvable planning
tasks, the early detection of states that can not lead to a goal
makes can help prune out whole branches of the search
space. In the case of dead-end detection [4], various works
have focused on the elaboration of formulas that can be
efficiently evaluated, and whose only models are states that
can not lead to a goal state. The notion of dead-end formula
has been generalized with the notion of traps [10]: a formula
𝜙 such that, once it’s verified in a state 𝑠, all states reachable
from 𝑠 will satisfy it too. A formula 𝜙 that is inconsistent
with the goal then shows that the current branch is not worth
exploring.

In the case where our algorithm does not manage to
find that the task is unsolvable, it still manages to remove
unnecessary elements from the planning model, to make the
task easier for the next algorithm. Various other methods
prune the model in a preprocessing step: in [1], the authors
show that invariants in the form of mutexes can be leveraged
to remove operators that will never be part of a plan. In [5],
it is shown how to combine symmetries of the planning task
and operator mutexes to find operators that are redundant, in
the sense that removing them preserves at least one solution-
plan.

Our algorithm also learns information that is not explic-
itly expressible in a STRIPS planning instance. In [16],
the authors draw inspiration from a well-known technique
in SAT solving, to learn clauses that recognize dead-ends,

through a conflict-driven approach during search. They also
show how to learn traps online [15]. Learning is ubiqui-
tous in generalized planning, which is a domain concerned
with the synthesis of generalized plans, which are proce-
dures that solve multiple instances. For instance, previous
work [17] proposed to learn heuristics in the form of logical
formulas, out of a set of small examples instances, so as to
recognize unsolvable planning instances.

In [3], another polynomial criterion is proposed to im-
mediately detect a class of unsolvable instances without
resorting to search. The authors synthesize a function that
separates the initial state from all goal states, through a lin-
ear combination of features valued in a finite field. Akin
to our criterion, their technique is incomplete, but it is very
efficient at detecting parity arguments.

7 Discussion and conclusion

Section 5 showed that, when our criterion failed to show
an instance unsolvable, it was still possible to extract addi-
tional information from the model by leveraging the crite-
rion. Even more so, in some cases, otherwise undetected
unsolvable instances could be identified as such by this
means. Yet, there is still a lot of room for improvement: a
more in-depth study of our operations, as well as their inter-
actions, could help us fine-tune the algorithm. Indeed, not
all sequences of tests are equal in all aspects, and finding a
sequence that avoid unnecessary computations is a way to
optimize our algorithm, and to boost its detection power.

In our tests, we choose to simply run pre-determined se-
quences of operations and tests. This means that, regardless
of how tests succeed or fail, the algorithm will linearly go
through the same sequence of operations, except if it can
show preemptively that an instance is unsolvable. However,
the outcome of some test may help in finding which step to
take next. For instance, after finding that an operator is a



landmark, it might be interesting to check right away if it
can be removed.

One of the main weaknesses of our iterative refine-
ment algorithm is its computational cost. Even the most
lightweight sequences, such as the OperatorPreImpossible
sequence, takes significant time to complete. Our program
builds each linear program from scratch each time a test is
performed. However, very few constraints differ from one
linear program to the other; thus, one could modify only
these constraints from one test to the next, in order to save
significant time.

As a conclusion, we showed that a simple criterion was
sometimes enough to prove that a planning instance is un-
solvable. Even though our program is non-optimised, we
have still managed to show that resorting to a search is
not always necessary, as reasoning on the model directly
can suffice. Even when our procedure fails, it still gath-
ers valuable information about the instance, that can help a
complete procedure terminate faster.
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